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PREFACE

TaE College Entrance Board recognizes two standards of re-
quirement in algebra: first, the ordinary one, for colleges of
liberal arts; and second, the standard for entrance to technical
schools. This book is arranged to follow a First Year Course,
and is adapted to meet either of these two requirements, as
well as the needs of students desiring to secure a maximum
amount of mathematical training in the high school. PartIis a
review of the First Year Course; Part II includes the remaining
topics belonging to elementary algebra; and Part III, the usual
topics of advanced algebra, as, the general theory of equations,
determinants, ete. Containing as it does the chapters on ad-
vanced algebra, the book is adapted for use in those colleges
which seek to lead their students through the gateway of
algebra to the study of other college mathematics rather than
to train them in the refinements of algebraic logic. For college
students, especially for those who do not come fresh from the
study of elementary algebra, the review will be found a great
convenience. )

The review of the First Year Course to radicals is intentionally
rapid, being presented as succinctly as clearness and thoroughness
permit. The exercises are moderate in number and difficulty.
Since radicals and quadratics usually come at the end of the First
Year Course, they are seldom as well understood or remembered
as the earlier topics, and therefore should be reviewed in more
detail. One aim sought in Part I was to unify the preceding
mathematics, — arithmetic, algebra, and plane geometry, — as
effectively as possible. In accordance with a suggestion of the
Society for the Promotion of Engineering Education, there will
be found on page 89 a Summary of the fundamental principles
of elementary algebra, for study and reference.

918248



vi PREFACE

Special attention is directed to the chapters on logarithms, per-
‘mutations and combinations, determinants, and graphs. In the
chapter on graphs a uniform plan and notation are followed
throughout, designed to show the connection between the given
equations, the tables of values of codrdinates derived from them,
and the corresponding graphs constructed on the diagrams from
the values given in the tables. This method of presenting the
matter makes a rather difficult subject much easier to learn.

In the advanced portion, covering the college algebra topics
proper, the aim, as in other parts of the study, has been to secure
simplicity, clearness, and conciseness, without sacrifice of rigor.
The practical character of the exercises will also commend itself
to teachers and students.

The author acknowledges with thanks valuable suggestions
made on the manuscript or on the proofs by Professor Ernest B.
Lytle, of the University of Illinois, Urbana; Professor Paul
Prentice Boyd, State University, Lexington, Ky.; Professor
Robert E. Moritz, of the University of Washington, Seattle;
Professor E. A. Lyman, of State Normal College, Y psilanti,
Mich.; Mrs. Eva S. Maglott, of the Ohio Northern University,
Ada; Lewis Omer, of the Northwestern University Academy at
Evanston, I1l. ; Ralph P. Bliss, Commercial High School, Brook-
lyn; J. Henry Graham, Central High School, Philadelphia;
Arthur F. M. Petersilge, East High School, Cleveland; J. S.
Counselinan, High School, Birmingham ; W. F. Moncrieff, Hume-
Fogg High School, Nashville; C. M. Bookman, High School of
Commerce, Columbus ; Marie Gugle, Central High School,Toledo;
T. H. McCormick, High School, Ft. Wayne; and ‘W. E. Beck,
High School, Sioux City.
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1. Four PrackE TABLE oF LOGARITHMS

TABLES

2. Four Prace TaBLE oF NaturaL FuNcrions .
3. InTerEsT TABLES (SECTION OF BOND TABLE)

numbers from 10 to 99, and from 0 to 10 by tenths,

V8.2 =1.789.

From it can also be obtained the square root of any number consisting of
two figures followed or preceded by any number of zeros. Thus, V5900
=176.81; V460 = 21.45; V.084 = .2898; v.006 =.07746 ; etc.

4. TABLE OF SQUARE ROOTS

The following (read as a logarithmic table by getting the first figure in the
left column and the second figure at the top) contains the square roots of
Thus, V382 =5.667;

PAGE

. 176
. 164

204, 206

0 1 2 3 4 5 6 7 8 9
or.0|lor.1|or.2|or.3|or.4|{or.5|or.6|or.T|or.8|or.9
0 0.000 | 1.000 | 1.414 | 1.732 | 2.000 | 2.236 | 2.449 | 2.646 | 2.828 | 8.000
0.000| .316| .447| .548| .682| .707 | .775| .887 .894 949
1 8.162 | 8.817 | 8.464 | 3.606 | 3.742 | 3.873 | 4.000 | 4.123 | 4.243 | 4.859
1.000 | 1.049 | 1.096 | 1.140 | 1.183 | 1.225 | 1.265 | 1.304 | 1.342 | 1.378
2 4.472 | 4.683 | 4.600 | 4.796 | 4.809 | 5.000 | 5.000 | 5.196 | 5.292 | 5.385
1414 (1.449 | 1,483 1.517 | 1.549 | 1.581 | 1.612 | 1.643 { 1.673 | 1.703
3 5.477 | 5.568 | 5.657 | 5.745 | 5.831 | 5.916 | 6.000 | 6.083 | 6.164 | 6.2456
1.732 | 1.761 | 1.789 | 1.817 | 1.844 | 1.871 | 1.897 | 1.924 | 1.949 | 1.9756
4 6.325 | 6.403 | 6.481 | 6.5657 | 6.633 | 6.708 [ 6.782 | 6.856 | 6.928 | 7.000
2.000 | 2.0256 | 2.049 | 2.074 | 2.098 | 2.121 | 2.145 | 2.168 | 2.191 | 2.214
5 7.071 17.141 | 7.211 | 7 280 | 7.348 | 7.416 | 7.488 | 7.5660 | 7.616 | 7.681
2.236 | 2.268 | 2.280 | 2.302 | 2.324 | 2.345 | 2.366 | 2.387 | 2.408 | 2.429
6 7.746 | 7.810 | 7.874 | 7.937 | 8.000 | 8.062 | 8,124 | 8.186 | 8.246 | 8.307
2.449 | 2.470 | 2.490 | 2.5610 | 2.5630 | 2.6560 | 2.5669 | 2.5688 | 2.608 | 2.627
7 8.367 [ 8.420 | 8.485 | 8.5644 | 8.602 | 8.660 | 8.718 | 8.775 | 8.832 | 8.888
2.646 | 2.665 | 2.683 | 2.702 | 2.720 | 2.789 | 2.767 | 2.776 | 2.793 | 2.811
8 8.044 | 9.000 | 9.055 | 9.110 | 9.165 | 9.220 | 9.274 | 9.827 | 9.881 | 9.434
2.828 | 2.846 | 2.864 | 2.881 | 2.898 | 2.915 | 2.988 | 2.950 | 2.966 | 2.983
9 9.487 | 9.539 | 9.502 | 9.644 | 9.695 | 9.747 | 9.798 | 9.849 | 9.899 | 9.950
3.000 | 8.017 | 8.083 | 3.050 | 3. 3.082 | 3.008 | 3.114 | 3.130 | 8.146
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X TABLES

5. TABLE OF SYMBOLS

1. Of Number: 1,2,3,...10,11...1, V, X, L, C, D, M ; Italic letters,
a b, ¢, --; a, b ¢, ...(read ‘a prime,’ ‘b second,’ ‘¢ third’...);
@, ag, as, --- (read ¢ @ sub one,’ or ‘@ one,’ ... ); Greek letters, e, 8, v, 3,
<+ w; 0, zero, o , infinity, but o does not denote a definite number.

II. Of Operation: +, —, + (plus and minus), + exeess, - defect, x, -,
+, :, /, vinculum in a fraction, /-, &, exponents (integral, fractional,
positive, and negative). Absence of any sign between letters, between fig-
ures and letters, and between parentheses denotes multiplication, but between
JSigures in arithinetic and algebra it denotes addition. The solidus line / is -

sometimes used to mean ‘over.’ Thus, a/) denotes g Cancellation is de-

noted by one oblique line, as W~xb; crossing out equal quantities with
opposite signs by two oblique lines, as, M-— . Such quantities are
said to destroy each other.

III. Of Relation: =, is numerically equal to ; =, is identically equal to;
=, is not equal to ; >, is greater than; <, is less than; =%, is not greater
than ; ¢, is not less than ; o, varies as (little used); =, approaches the limit.
Formerly = was not in use, and = is still largely employed throughout literal
arithmetic in identical equations.

IV. Of Aggregation : Parenthesis ( ); brace { }; bracket [ ]; vinculum —.

V. Of Continuation: a, b, .-, read ‘a, b, and so on’; a, b, ---, k, read
“a, b, and so on to k.’

VI. Of Inference: ..., hence or therefore ; ‘.-, since or because.

VII. Miscellaneous: { =V — 1; f (z) for f function of z.

(z, ¥), the point whose Cartesian codrdinates are x and y.

log, n, the logarithm of n in a system whose base is a.

P, the number of permutations of n things » together.

»Cr, the number of combinations of n things r together.

n!, n factorial, or the product of all the numbers from 1 to n.

n=r
u,, summation from n =1 to n = r of u,.
n=1

.83 for .636363 ..., called repeating decimal.

1 for recurring continued fraction (see § 208).

| e

2+4
a bi| |ar by &
az bz|'|az by 2], etc., determinant notation.
a; by ¢




ADVANCED ALGEBRA

PART 1. REVIEW OF ELEMENTARY ALGEBRA

CHAPTER I

REVIEW OF LITERAL ARITHMETIC
1. THE FOUR FUNDAMENTAL OPERATIONS

1. Algebra and Arithmetic. Both algebra and arithmetic treat
of numbers, but algebra uses general characters as well as figures
to represent numbers, and recognizes both positive and negative
numbers.

Much of algebra has to do with equations. The symbol of a
conditional equation, “ =" means that the number on its left is,
or becomes, the same as the number on its right when a letter or
letters are given certain values and any indicated operations on
either or both sides have been performed. The symbol of an
tdentical equation, “=,” denotes that the expression on its left is
either the same, or reduces to the same, as the expression on its
right. Any letter in an identical equation can have any value.
A conditional equation is essentially an interrogative sentence,
and an identity a declarative sentence.

The transformations of this chapter yield identical equations or
identities. The next chapter deals with conditional equations.

2. Meaning of Addition. The word ‘addition means literally
“putting together.” The sum of two nuinbers contains as many
units as there are in both numbers. The sum of two line seg-
ments is found by placing them end to end on the same straight

line. The sum of two forces, represented by two adjacent sides
1
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PR R ot o p@ia.llelogram, is a force represented by the diagonai of the
parallelogram drawn from the intersection of the two glven ad-

jacent sides.  Thus, o foxd 77

b
The sum of the complex numbers

a+bVv—-1and ¢c4+dv-1
is (@+o)+0@+ad)v—-1

It is evident from these illustrations that the operation of
addition, denoted by the sign +, is difficult to define in precise
terms.

Addition in algebra is governed by the following laws, which
may be considered as constituting a part .of the definition of
addition: :

Laws of Addition. 1. Any two numbers have a sum that is the
result of adding them. This sum is uniquely determined, that is,
it has only one value.

2. The commutative law, or a 4+ b="+a.
3. The associative law, or (a +b)+c=a+(b+c).
4. Ifat+z=a+y, thenxc=y.

3. Meaning of Subtraction. Subtraction may be defined as the
operation of finding # in the equation b4 z=a; or, of finding a
number which added to one of two given numbers produces the
other.

Law of Subtraction. There i3 one and only one value of = that
satisfies the equation b+ x=a.

Using “ — ” for the sign of subtraction, we write x=a —b.

If b=a, z=a —a. This value of a — a is denoted by 0.
If x4+a=0, then 2=0—gq, or —a.

In this way — becomes a sign of the quality of the quantity to
which it is prefixed. Thus, — before a number indicates that it
is below 0, and +, that it is above 0. When no sign stands before
a quantity, 4+ is understood. When used as a sign of quality, +
or — is frequently inclosed with its quantity in a parenthesis.
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In algebra, subtraction is commonly included with addition.
Thus, 6+4-3-7+2
can be written 6+44+(—3)+(—7+2.

4. Meaning of Multiplication. Multiplication in its simplest
form is an extension of the idea of addition, the numbers added
being equal. It is denoted by X, -, and by absence of sign be-
tween letters, figures and letters, letters and parentheses, and
parentheses in juxtaposition.

Not only can we have two ordinary numbers multiplied together
giving a real product, as 2 x —3=—6, but we can have two
imaginary numbers giving a real product, a8 2v —1 x —8vV—1
=+6, since V—1xV—1=—1. Onagraphical representation
these numbers are lo-

cated as indicated in the Ts\f——l

figure. - Thus we see that T2 V=1

the product of two num- R vt S
bers on the vertical line - —3 —2 —1 1 2 3 4 b

gives a number on the 1—2v—-1
horizontal line. -3V~1

It is evident from the
preceding illustrations that it is difficult to define the term multi-
plication precisely.

Multiplication in algebra is governed by the following laws,
which may be considered as constituting a part of the definition
of multiplication:

Laws of Multiplication. 1. The product of two numbers, a and
b,asa X b, or ab, is a number; this number i3 uniquely determined.

2. The commutative law, or ab = ba.

3. The associative law, or (ab)c = a(bc).

4. Ifa X x=a X Yy, then x =y, provided a=0.

6. The distributive law, or (a 4+ b)c=ac + bc; or,
(a+ b)(c + &)= ac +ad + bec + bd.
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a. The distributive law gives a general rule in mathematics, which is that
every part of the wultiplicand must be multiplied by every part of the mul-
tiplier and the partial products must be added.

8. The laws of signs: (+a)x(+b)=+ab; (+a)x(—b)=
—ab; (—a)x(+b)=—ab; (—a)x(—Dd)=+abd.

Or, like signs in the two factors give a positive product, and unlzke
signs give a negative product.

b. Various explanations of the laws of signs, based on the distributive law
and addition, are given in elementary algebras because they s:rve to satisfy

the mind of the pupil as regards their reasonableness. These laws, although
assumptions, have been proved by experience to be adapted to the needs of

algebra.

5. Meaning of Division. Division may be defined as finding the
value of # in the equation az = b, or as finding one factor when
the product and the other factor are given.

Law of Division. 1. If a and b are two numbers (a = 0), there
is one and but one value of x that satisfies ax = b.

Division by 0 is always excluded, since it has no meaning.

2. The law of signs in division is easily deduced from that for
multiplication, since division is the inverse process to multiplica-
tion. Like signs in dividend and divisor give a positive quotient,
and unlike signs a negative quotient. ’

Definitions

6. A quantity in algebra is a nwmber, which may be repre-
sented by a single figure or letter, or by a more or less comph—
cated expression of figures, letters, and signs.

7. An exponent is a number written to the right of, and higher
than, a quantity. When it is a positive whole number, it shows
how many times the quantity is to be taken as a factor.

Thus, B=bxbxb)r*=exzsXxTX2

8. An integral power of a number is the continued product aris-
ing from using the number one or more times as a factor. When
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a number is used once as a factor, the other factor is 1.
Students often fail to distinguish between a power and the expo-
nent of the power. Thus, the power denoted by 2¢is not 4, but 16.

When two or more equal factors multiplied together produce a
number, one of these equal factors is called a root of the number.

The sign / denotes that one of the equal factors of the number
following the sign is to be taken. Thus, V64 =4. The small
figure over the radical sign is called the index of the root and
shows into how many equal factors the numkber is separated.

9. A term, or monomial, i3 a quantity not separated into parts
by a + or a — sign. In a term, there is usually a numerical
coefficient * and a literal, or letter, part. Thus, 3 a*b is a term in
which 3 is the numerical coefficient.

A binomial is a quantity consisting of two terms, a trinomial, of
three terms, and a polynomial, of two or more terms. By a “ poly-
nomial in x” is meant a sum of multiples of powers of z; as,
3 +2x4axr—1.

10. Similar terms are those having the same letters with the
same exponents for the corresponding letters. Similar terms may
differ in signs and coefficients. Thus, 6 a’bc* and — 11 a®b¢* are
similar terms.

11. The numerical value of a quantity is found by assigning
certain values to its letters and simplifying the result.

Numerical values are frequently used to check answers. Roots
of equations are verified, and exercises can often be proved correct,
as by multiplication in factoring. If verifying or proving is cor-
rectly done, the answer must be right; .but answers can check and
yet be wrong, Thus, if «® is the true answer, while a® is the
answer obtained, if @ =1 is substituted, the answer checks.

12. Symbols of aggregation are the parentheses (), the bracket [],
the brace {}, and the vinculum ——. They are used to indicate
that the quantity within is to be regarded as a single quantity.

* Formerly, algebraists often thought of letters as denoting magnitudes (such
as lines, ete.) not expressed as numbers.
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Order of Operations in Algebra
13. Rules of Precedence of Operations. This topic is very im-
portant. '
1. In any term (§ 9), symbols of aggregation being absent, raising
to powers and extracting roots must be performed before multipli-
cations and divisions.

Thus, 2 x3*=18; 34> =3xr; while (32)*=9 ax.

2. Symbols of aggregation being absent, multiplications and
divisions must be performed before additions and subtractions.

Thus, 34+4x5=23; 5x2*—-2"+4=18

3. Operations inside symbols of aggregation must be performed
before those outside.

Thus, 83+4)=8xT7=056. (2x3)*=6*=36.

ExamrLe. Ifa=3, b=2, c =64,

15 ab* —3 B¢

becomes 15 x 3 x 20 — 3 x 22 x V64 (By § 11)
or, 15x3x4—3x8x4, or 84. (By § 8)
a. Multiplications and divisions denoted by x, ., + are performed in

order from left to right, but when multiplications are denoted by juxtaposi-
tion, as in 4¢ + 3 ab, the multiplications in dividend and divisor must be
performed first. Hence, in translating this notation to that of x, ., +,
parentheses must be introduced.

Thus, if a =12, b=3, ¢=4.
a+bxXc=12+3x4=16; whilea+bc=12+3 x4)=1.

14. Importance of the Rules of Precedence of Operations. If
strict attention is not paid to the order in which operations are to
be performed, great confusion may result.

Thus, (2+3) x4?=80; while 24-(3x4)*=146; and (243 x4)?
= 196; and 2 + 3 x 4*=150, by the rules of § 13.

Although other rules than those just described might have
been adopted by those who introduced the algebraic notation, yet
since the rules of § 13 ale well adapted to their purpose and are
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universally used, those who study algebra are required to make
their calculations conform to these laws.

15. Exercise in Simplifying Expressions and Finding Values.

1. 347—6+4—2. 2. 346+2.

3. 46-—3)—2. , 4 8x6+3—12.

5. 24+ (2 x3). 6. 5—2)(11 —3 x 2).

7. 241642, 8. 2.7 53 .4

9. 2(13 +72—41) —15. 10. /[3(19 + 50 — 42)] + 26.
Translating in Algebra

16. Exercise in Translating Algebraic Expressions into Ordinary
Language. Changing algebraic language into ordinary words is,
in many respects, like translating from one language to another,
as from English to German, or from Latin to English. The
student will find that quantities which cannot be described in
ordinary language without much circumlocution are expressed
readily in the algebraic notation. This is why we can easily
work with and reason about quantities written in the algebraic
notation, while the complexity of the language would make it
difficult to deal with the same quantities in ordinary language.
The great mathematician Fourier said of the algebraic notation,
“ There can be no more universal or more simple language, no
language more exempt from error and obscurity.”

1. Translate 4 ab* — 3 a*Vc+ 9 ¢ into ordinary language, and
then find its numerical value when a =2, b =3, ¢ =4.

TraANsLATION. ¢ From 4 times @ times b times b take 3 times a times a
times a times the square root of ¢, and add 9 times ¢ to the remainder.’’
To evaluate 4ab2-8atVe+9ec,
we have 4x2x8x8—-8x2x2x2xV4+9x4,
that is 72 — 48 4 36, or 60. Ans.
2. Translate 82+ 22y —y+/7, and evaluate when x= =3,
y=1,2=09.

COLLINS'S ADV. ALG. —2
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3. Translate 3 x(y*—=z), and evaluate when #=35, y=8, 2=25.

SueerstioN. ‘3 times x times the quantity which is the difference be-
tween y times y and 2.’

a. It is convenient to use the phrase ‘ the quantity,’ or ¢ the binomial,”
etc., to indicate what is included in parentheses.

Translate the following 15 exercises and evaluate them when
w=3,y=5,z=4:

4. 3z(y—2). 5. 4(xy — 2). 6. 3x2+2 9%

7. 9a%yz — 2y 8. 3z —22zVz. 9. 4(+yt—2).
10. 3 (xy%)% 11. 4 (xy® — x%). 12. 2(3xy? — 2)%
13. 2z —y)%. 4. 2Vyi—at 15. (x + 2y)(By —2).
16. 42 zy)%. 17. V3. 2% 18. 1227 + o*p~.

19. If ¢ represents the cost of n articles and p the price of one
article, translate ¢ = np into words.

20. If ais area of a circle, and r is radius, put =72 into words.

21. If « represents the area of a trapezoid, b and &’ its bases,
and k its altitude, translate a = }(b 4- b')k into words.

22. If s represents the distance through which a body moves,
v its uniform velocity or speed, and ¢ the number of seconds it is
in motion, translate s = v¢ into ordinary language.

23. If a and b represent the two legs of a right triangle and 2
its hypotenuse, translate a?+ b>= h? into words.

24. If s is the half sum of the sides a, b, ¢, of a triangle, and
.1 is its area, translate into words A=+Vs(s —a)(s —b)(s —¢).

Exponents
17. Laws of Exponents.
1. Multiplication. .
Let a be any quantity and m and » positive integers. Then
a™ = aaaaaq --- to m factors,  a* = aaaa--- to n factors. (§7)

Therefore,-a™ x a" = aaa --- to m factors X aaa -:- to n factors
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or, a™a® = aaaaa --- to m 4 n factors.
Therefore, = a™a” = am+n.
Hence, add the exponents of the same quantity in the factors for
the exponent of this quantity in the product.
Pxd=? yxy'=? (a+d)’x@+d=? o xrt?=?
2. Division. ‘
With the same quantities as those used in multiplication, we
have
am _ aaa --- to m factors
a" aaa--- to n factors

=gam-n, (Canceling com-
mon factors.)
Hence, subtract the erponent of a quantity in the divisor from

the exponent of the same quantity in the dividend for the exponent
of the quantity in the quotient.

c+at="? amam =" (m + n)"—z—(m+n)’=?
3. Powers.
(am)*=a™ x a™ X a™ x --- to n factors CX)
=a,"'+"'+"'+ « to n terma (By 1’ page 8)
or, (amyr = amn,

Hence, multiply the exponent of a quantity by the exponent of the
power to which its power is to be raised for the exponent of the
quantity in the result.

@p=? (y=? (a+yy=?

4. Roots.

Vam =3/a™ x a™ x --- to n factors = a™ (since by § 8, one

of n equal factors is the nth root of their product)
. mn
or, Vam™=aw

Hence, divide the exponent of the quantity by the index of the root
for the exponent of the quantity in the result. .

'\/?:? {/(?=? V.’B‘T"=? '{/(b_——-c_)m=?

YVigy=2 VaX@E=?  Ymrm=?
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Performing Fundamental Operations

18. How the Fundamental Operations are Performed.
1. Addition of similar monomials (§ 10) is performed by taking the

 arithmetical difference between the total of the positive and the

total of the negative coefficients, giving it the sign of the numeri-
cally greater total, and annexing to it the common literal part.

Thus, 6ab—11a®b +5a% — 7 a® + 2 a*b =— 5 a?.

The result of such addition can be ckecked by adding the terms seriatim ;
that is, the third term to the sum of the first two, the fourth to the sum of
the first three, and so on.

a. Dissimilar monomials are added by simply indicating the addition.

Thus, the sum of 342, 2b, and —4cis8a2+2b —4ec.

b. Two equal and opposite terms crossed out, as M—M are said to
destroy each other, giving 0 for the sum. The word cancel and the can-
cellation mark should be reserved for dmsion

2. Addition of polynomials is performed by pla.cmg the guanti-
ties to be added so that similar terms will fall in the same
columns, and adding these columns, using the rule for monomials.

ExaMPLE. 11a3—12ab + 1802

—2a%4+ Tab— 4b3+ Tbe
4a2— ab+ 602—12bc+ c?
18a2— 6ab+16b2— bHbc+c?

8. Subtraction can be performed either by finding a quantity
which when added algebraically to the subtrahend gives the min- -
uend, or by conceiving the sign of each term of the subtrahend
to be changed and adding the result to the minuend.

Addition in algebra is most easily understood by thinking of
the addition of debts and credits.

Subtraction in algebra is most clearly grasped by thinking of it
as finding the distance between the minuend and the subtrahend
on the algebraic number scale, and marking the result 4 or —
according as the minuend is above or below the subtrahend on the
scale.

Thus, on a thermometer scale, the difference between + 12° and — 19° is
the distance between them, or + 81°; the difference between — 17° and — 5°
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is the distance between them, or — 12°, the answer being marked —, since
the minuend (the quantity named first) is below the subtrahend. Evidently,
the remainder — 12° and the subtrahend — 5° added give the minuend — 17°,

EXAMPLES. A 6 a? S22 — 22y — 1192
—11q? —a2 4By — Tyt
17 a2 422 —Taxy— 492

4. Multiplication of monomials is performed by multiplying
together the coefficients of the factors for the coefficient of the
product, and adding the exponents (§ 17, 1) of the same letter or
quantity in the factors for its exponent in the product, the letters
being arranged alphabetically. If there is an odd number of
—factors, the product is negative ; otherwise it is positive.

Thus, —6a x —3ah" X 2 ab% = 36 a'b"+e.
5. Multiplication of polynomials is performed by use of the dis-
tributive law, § 4, 6.
Thus, 3at—2ab 4 b?
a—2b
3a*—2a®+ ab?
—6ab+4a’—20
3a*—-8ab+5ab2—20

8. Division of monomials is performed by dividing the coefficient
of the dividend by the coefficient of the divisor for the coefficient
of the quotient, and subtracting the exponent of any letter or
quantity in the divisor from its exponent in the dividend for its
exponent in the quotient. The rule for signs is given in § 5.

Thus, 30 a®™c +(— 5 ab®) = — 6 ab™c.

7. Long division is performed by first arranging both dividend
and divisor according to the ascending (or descending) powers of
one leading letter. Then the first term of the dividend is divided
by the first term of the divisor, giving the first term of the quotient.
Next the whole divisor is multiplied by this quotient term and the
product is subtracted from the dividend. Then the first term of
the remainder (in arranged form) is divided by the first term of
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the divisor for the second term of the quotient, and the whole
divisor is multiplied by this quotient term, the product being sub-
tracted from the first remainder. This process is continued until
there is no remainder, or until the first term of the last remainder
does not contain the first term of the divisor.

The work can be checked by multiplying divisor and quotient
together, adding the remainder to the product, and seeing if the
sum is the same as the dividend.

DivipeEND .
EXAMPLE. 6x24+bxy—4y2|32+4y Divisor
6224 8zy |22 —y Quoment
—8ay—4y?

8. A monomial is raised to a power by raising its numerical co-
efficient to the required power for the coefficient of the result,
and multiplying the exponent of each letter or quantity by the
exponent of the power to which the monomial is to be raised for
the exponents of the several factors in the result. (See § 17, 8.)

Thus, (— 3 ab*) = 81 a*bic; (ambc)® = q™b™c=.

9. The root of a monomial is extracted by extracting the required
root of its numerical coefficient and dividing each of the expo-
nents of its literal factors by the index of the required root for the
exponents of the several factors in the result. The sign of

any even root is + or —, written +. The sign of any odd root
of a quantity is the same as the sign of the quantity itself.

Thus, ~/—8a%’™ =—2ab’c®™; Vidy’ =+ 2ay.

19. Removal and Insertion of Parentheses.

1. Symbols of aggregation preceded by + can be removed without
changing the signs of the quantities inside them.

Thus, (@+2b)+(c—3b)—2b
becomes a+2b+c—-3b—2b,ora—3b+c

2. Symbols of aggregation preceded by — can le removed by
changing the sign of every term within them.
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Thus, —(@®* =20+ ) —(—30*+4¢)
becomes < —a*+2b*—c24+30*—4c¢%or —a?+502 -5t
Notice that the signs before the parentheses call for the chang-
ing of the signs within and themselves disappear in this operation.

8. If symbols of aggregation contain others, all can be removed in
one operation by leaving unchanged in sign all those terms preceded
and affected by + signs or by an even number of — signs, and by
changing the signs of those terms preceded and affected by an odd
number of — signs.

Thus, 3a—§{2a—[3c—(2a— 0]},
becomes 3a—2a+3c—2a4+bor —a+b+3ec

A good plan to follow is to check, i.e. mark, the terms whose
signs are to be changed before removing the symbols.

4. Quantities can be inserted in parentheses preceded by + with-
out changing the signs of their terms, and in parentheses preceded by
— by changing the sign of each of their terms.

Thus, a4+b—2¢c—3d+4e
becomes @+bd)—(2c+3d—4e).

20. Exercise in Performing the Fundamental Operations.

Add 3a,5a, -Ta,6a, —11a,2a. Ans. —2a.

Add 2 a™b®, — 7 a™b® — 12 a™b™, ambr, — b a™b™.

Add 4 aibt, — 21 oot — 11} odod, 6 adbt.

Add #—222+5, —332+Tx—4, 52°—222—11g,
and — 2* — 152 4+ 12.

L A e

Subtract in the following four problems:

6 a’ — 9m? ‘ 2 a% — Tbe?
5. gar 6 _3m T _11a% 8 _19pe
9. From 11 a®— 6 a’h — 7 ab® — b® take a® — 12 a% + 4 ab*— 6 1%
10. 2mP—mP—4m—6)—3Bm —bm* —2m 4 12)="?

1. 6F—Bar—11a?)+(2a*—2a)— (52 —2 ax) = ?
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Perform the multiplications indicated in the following :

12. 6a x(—2a%). 13. 5a’® x 11a%~ 14. 2 atyt x — 3 by,
16. (Z2a*+3ay)(3a® —2ay). 16. (2*—2'+22)(2° —-5x+4).
17. Bat —22+3ad —1)(5at — 2 +2).

18. (m* — m°n® + 5n®)(m* — 2mn® — T u®).

Perform the divisions indicated in the following:

19. 15a®+5a. 20. 25 a*+ 3a’ 21. af +ak.

22. 3a'mtn o gmoin, - 28, 12clddet +— 7.

24. (4 a®— 8a’® — 6 abc)+2a. 25. (a:* —4at 43 xi)—z- at,

28 (—T2x—6)+(x—3). 27. @®—-222+1)+(*—2x+1).
28. Divide a*—8a*+24a*—30a 412 by a*—4a+ 4, and

- prove the answer correct by multiplying the divisor and quotient
together and adding the remainder, thus getting the dividend. .

29. (21a®—4a?—12 —42a)+(4a + 2 - 3aY).

30. Divide 1 + 22 by 1 — 3 «, getting five terms in the quotient,
and prove the answer correct.

31 (2" 4 2yt + 2y 4 Y™ + (@ 4 y7).

Find in the quickest way the numerical value in Exs. 32-34.

32. *+a2*—42*+ 52— 3 divided by @+ 22 -3 ifx=3.

33. (@ -6y +92% —4y)+(@—3ay+2y°) whenax =3,
y=-— 1.

34. @ —6axy—92—y)+(a*+32+y) whenr =4, y=2,

Remove symbols of aggregation and simplify in the following:

85. 1 —22432)+@B+2z— 2.

3. (@a—~2b—8¢c)—(b+c—3d)+Ce+d~f)—(f+g—e).

37. a—b—c+b+c—d—e—d—f——f+g—e

SuceesTioN. Test by writing parentheses for vinculums and solving.

38. 1-{1—-[1-@1-—2]4.

39. 3c+@a—[bc—{3a+c—4a}l.
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40. 2m — [3m — {m—(2m—3m+l)f —(Bm—2)].
Simplify in the following:

41, (a + b))+ ¢)— (c + d)(d + a) — (a + c)(b — d).
42 [2—Q2y+32)][z—2y—32)].

43. 2+ 9@ —y)[@—y@—y)]

4. a(x+ D@+ 2)(z+3)+ 1 — (@ + 1)(=* +1).

Raise the following quantities to the powers indicated or ex-
tract the roots:

45. (3 m®%; (&°)*; (a™); (— 6a%™)®; (a®)™; (3 ad)*

46. Vi6af; Via™; V=8d; V2Tm®; Varbn; v/ a.

47. Divide #* — 284% + 82* — 35 + 21 by #® — 52— 7 by the
method of ¢« detached coefficients.”

SorurioN. We write the coefficients only in regular order, filling in miss-
ing powers of x with 0 coefficients.

. 1+40-284+8—-8+21|]1-64+0—-7

1-6+ 07 1+56—8

5—-284+16—-3856 or, 22 +b6x—38. Ans.
6—26+ 0—36 B

— 84164+ 0421

— 34+164+ 0421

The student who does not understand this solution should perform the
division in the usual way, supplying missing powers of x with 0 coefficients.
By comparing his solution with that above he will understand the process.

Perform "the divisions in the following by the detached coeffi-
cients method :

48. Divide 2* +-42*+ T2 46 by #* + 224 3.

49. (a* — 8 a%’® + 16 2*) + (a® + 4 ax + 4 2°).

SuccesTioN. Write the dividend 14 0 — 8 + 0 + 168, thinking of it as
standing for a* + 0 a3z — 8 a%¢2 4 0 ax® + 16 x'.

50. (1520 4+ T2+ 78 +1524+4)+- B2+ 22+ 1).

51. (o + o%® + y*) + (&° — 2y + o¥°).

52. 14+52—62)+(1—2+32).
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II. FORMULAS AND THEOREMS

21. Formulas and Theorems. The formulas that follow are de-
rived by simple multiplications and divisions. They are ex-
amples of identical equations defined in § 1. The student should
perform the multiplications and divisions, verifying the truth of
the formulas. Thus, in Theorem I he should show that

(a+b)(a+b)=a*+ 2 ab + b2
The theorems are simply a translation of the formulas into words.
I (a + b)'=a*+ 2ab + b

Turorem. The square of the swm of two quantities equals the
square of the first, plus twice the product of the first by the second,
plus the square of the second.

a. The student should point to the corresponding symbols in the formulas
of this article as he says the words of the theorems. Notice that the exponent
2 is read first, then + between a and b,; and 8o on.

ExaMpLEs. (3 a2 + 2 b3c)? = (3 a?)?+ 2(3 a?) (2 b¥c) + (2 bi¢c)?

=9a*+ 12 a?b8% + 4 82 Ans.
(4a®+8a2)2=2? (ba'm + 6myt)2 =2
CIL (@a— b6 =a*—2ab+ H

State the theorem that is derived from this formula.
ExamrLEs. (2a2—8z)2=1? (Usetheorem.) (mr—2p)2=2?

1I1. (a +b)(a—-b)=a*>— b

TaeOREM. The product of the sum and difference of two quanti-
ties is equal to the difference of their squares.
Examprrs. (6a? + 5b02)(6a2— 5b2) = (6a2)2— (5b2)?
=36 at — 20 bt. Ans.
BB+ 1)(Ba3—1)=2? Bxn—2y)(3zr+2y)="?
IV. (x+a)(x+ b6) =x*+ (a+b6) x + ab.

TurorEM. The product of two binomials having a common term
equals the square of the common term, and the algebraic sum of the
other terms times the common term, and the algebraic product of the
other terms.
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ExampLes. (a +2)(a+5)=a?2+T7a+ 10.
(22 4+ T) (22— 12) = x* — 522 = 84.
(Bxy —92)Bzy+122) =9 2%? + 82 (3 xy) — 108 22
=9x%? + 9zyz — 108 22
(422 +72%) (422 —1822) =? (Bar+5)Bar—14)="7?

If in the above examples the right member is given to find the left
member, then two numbers must be found whose algebraic sum is
the given middle coefficient and whose algebraic product is the
given third coefficient. Hence, we have

Converse THEOREM. A trinomial that is the product of two
binomials has for the first term of each binomial the square root of
its square term, and for the two second terms two gquantities whose
sum 18 coefficient of first term in the trinomial’s second term, and
whose algebraic product is its third term.

EXAMPLES. m2—11m — 26 = (m — 13)(m + 2).

ayt—12ay? —64 =9  gm 4 Qam — 112 =9
9at—33a2+28="? 4c3+16cd—33d2="?

V. (@a—b))=a*—3 a% +3ab’— b
Write the theorem that is derived from this formula. Then
repeat it while pointing to the corresponding symbols of the
formula.
ExampLes. (8a2—2)3=(8a?)3—3(8a2)2x2+3(8a2)x 2228
=27a% — 54 a* + 36 a2 — 8.
Am=—5n)=? (2a*—Th?)8="?
CoNVERBELY: 27 a8 —b64at+36a2—8=(3a2-2)3
64 m® — 240 mén + 300 m3n2 — 125 n8 = ?

VI a®— b= (a + b)(a — b).
State the theorem that is derived from this formula. It is the
converse of Theorem III.
ExamMPLES. 1642 — 9= (4 a* + 3)(4a" — 3).
818 —49a® =2 9q2 —25bv =?
(@a+b)2—ct="? mi—(n—p)t=1
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VIL @ — 6* = (a — b)(® + ab + 6%).

TuroreM. The difference of the cubes of two quantities equals
the product of the difference of the quantities multiplied by the square
of the first, plus the product of the first by the second, plus the square
of the second.

ExaMpLEs. 8ad — 2703 = (2a —30b)(44a?+ 6ab + 9b2).

64298 —1="? " 216p8s — p3 = ?

The formula a® — 5 = (a — b)(a® + ad + b?) is included in the

following more general formula:
ar* — b= (a —_ b)(au—l + ar=?b + ar—3h? 4 oee _I_bn—l).

GENERAL THEOREM. Tle difference of any same powers of two
quantities is exactly divisible by the difference of the quantities.

This theorem will be proved in chapter XI.

VIII. @+ 6 = (a + b)(a* — ab + b%).

State the theorem for this formula.

ExampLEs. 64 m® + 126 n® = (4 m* + b n?) (16 m¥ — 20 men? + 26 nt).

2740 + 64212 = ? 216 8 + 343 2% = ?

This theorem is included in the following :

_a2n+l + b2u+l — (a + b)(a2u — a?n—lb + a2n—2b2 — e + b’n)‘

Here 2 n + 1 is used to denote that the power must be odd.

State the theorem, commencing “The sum of the same odd
powers . . .” as in the general theorem in VII above.

IX. (a+b+ec+d)=a'+b*+c*+d*+2ab+-2ac+2ad+2be
+26d+2cd.

This formula may be generalized so as to include the sum of
any number of terms instead of the sum of four terms, as in the
formula. '

TaeoreM. The square of the sum of any number of quantities
equals the sum of their squares increased by twice the product of each
term by each term that follows it.
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ExampLes. (26-8b+56¢)*=(2a)2+(~-8b)2+(6c)? + 2(2.0)(—35)
+2(2a)(6c) +2(—38b)(bc)
=4a34+9b0%+26c2— 12ab + 20 ac

—30bc. Ans.

(m? —2n% 4 8pg — 471%)? = (m?)? + (—2n%)% +(8pg)? + (—47%)2
+2(m?) (— 21%) +2(m?) (3 pq) + 2(m?) (— 4 19)
+2(—272) (3pq) +2(— 2 ) (— 41%)
+2(8pq) (— 41%).

=mt+ 4 nt +9p%? + 16 18 — 4 m3n2 + 6 m2pq

— 8m¥® — 12 n?pq + 16 n28 — 24 pgrd. Ans.

11.
13.
15.
17.
19.
21.
23.
26.
27.
29.
31.
33.

® u g ow o B

Qr—4y+83a23=2

(@a—B+83—dar=2?

Exercise in the Use of the Formulas and Theorems I-V, IX.

(a*— 3 b).

(m? 4+ 2 nw)2,

(2~ — d)*
Q2z—4y)>

(a* — 2 o).

(§ o — § by
(Fat— 3Oy
@ — ¥

(100 — 2%

972%; 1032

(1000 4- 5)*.

(2 m*— 3 p)>
99%; 102%; 10042
(a+2b—3¢c)
(a*—222—3 )%
& m*— 12 pg)*.
(ap™— bg")>.

LA

10.
12.
14.
16.
18.
20.
22.
24.
26.
28.
30.
32.

(2a+3b)(2a—3b).
(—-5y)(z+Ty).
@e—Ty)(2z+6y).
Bz +5y) (32" —11y).
#a~—6y)(4a~+6y).
(62* — 7 2)(6 2* +11 7).
(12 abe*—14)(12 abe* — 26).
@ — ) +219).

(80 + 3)(80—3).

67 x 7T3; 54 x 46.

G m+ )G mt— ).
96%; 101%; 10022
(—3a*+b")(—3a*—60d".
(m*+3p—2q+r2

(a™ 4+ 2b"— 4 c» — B de)2,
(3 b* =15 ed)(3 b* + } ed).
(ab® — 25 cd®)(ab® + 11 cd?).
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III. FACTORING

23. Definition. Classes of Problems in Factoring. Factoring is
separating a given quantity into other quantities whose product is
the given quantity.

The following is a classification of all the more common exer-
cises in factoring.

I. Monomial Factor in Polynomial Expression
2ma+mb—me=m@a+b—c).
2xy—3by+2cy +y=2x—-36+2c+1)y.

I1. Problems Solved bj Theorems VI-VIII, § 21
1. Difference of two squares.
Formula: a*— b6*=(a+b)(a—b). (Th. VL)
ExampLes. 9a2—16b=(3a + 4b2) (3a — 4b?).
2Bmb—1=2 36p2—49¢2="?
(+y2-—22=" (a—b)2—-c3="?
2. Difference of two cubes.
Formula: a®— b*=(a— b)(a*+ ab + 6. (Th. VIL)
ExampLes. 2728 — 12698 = (322 — 5 ) (9 2t + 16 2%y + 26 p?).
8md—1="? adr — Yip =2
3. Difference of the same powers. (See § 21, VII, Gen. Th.)
ExaMpLEs. 20— 32 =(x —2) (2t + 228 + 422+ 8x + 16).
21—y’ =2 3206 —243 =7
4. Sum of two cubes. A
Formula: a®+ b*=(a -+ b)(a® — ab + b?). (Th. VIIL)
ExampLes. 64284343 =(4z + 7) (16 22 — 28 = + 49).
8at+ 126y ="? 18464 =2?
5. Sum of the same odd powers. (See § 21, VIII, Gen. Th.)

EXAMPLES. 25 + 5 =(x + y) (24 — 28y + 2%y% — 298 + y*).
m4+1=2? 82q5 4 b5 =2
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I1I. Problems Solved by the Trial Method

1. Trinomials. .

Two forms of the trial method for trinomials are described
below.

1st Method. By setting down two binomials as factors chosen so that their
product gives correctly the first and last terms of the given (arranged) tri-
nomial, and multiplying them together to see if they give the middle term.
If they do not, other trial sets of coefficients are chosen until a set of factors
is found whose product is the given trinomial.

ExampLes. 6234+ 17Txy— 14 y'=Bz—-2y)(2x + Ty).

Here 3 x and 2 x are first chosen to give 6 22, and — 2y and + Ty to give

— 14 y3. 'The sum of their ‘‘ cross products’’ is 17 xy, as required.

8m2—22m+16="? 15024+ 2ac—24¢¥="?
2d Method. By use of the converse of Theoremn 1V, § 21.
Exampres, Factor 6 22 + 17 zy — 14 y2.

6222 + 17 y(6z)— 6 x 1492 (Multiplying the given trinomial by 6, the
smaller end coefficient, putting 6 with x in
parenthesis in the second term.)

(6x—4y)(6x+21y). (Choosing two numb:rs whose product is
— 84 y2(— 6 x 14 y?) and whose sum is 17 y,
a8 § 21, IV, Converse requires.)
(Bz—-2y)(2x+7y) Ans. (Removing factors 2 and 8 inserted when we
multiplied by 6 at the start.)

Solve each of the following by both methods.
62+ 11y —10y2=? 8zt + 10 2%z — THy222 = ?
6 2% + 38 zoyb — 28 yB = ? 12m8 —283m3—=T77T="°
SvceesTioN., 12X TT=(2x2x3)(Tx11) =@ x11)(B xT).

2. Polynomials.

Two trinomial factors are set down whose product includes the
three leading terms of the given polynomial. Then multiplica-
tion shows whether their product is the given polynomial. If the
product is wrong, other sets of coefficients are tried until the cor-
rect set is found.

EXAMPLES.
222102y +1292 — 22+ Tyz—1022 =(x -8y +22)(2x— 4y —52)
622—19zy+16y2 + 722 —18yz— 2022 ="
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IV. Problems Solved by Extracting the Roots of Certain Terms

The sum of these roots bemg squared, cubed, etc., produces the
given quantity.

EXAMPLES,

1. 28—-3z%+3 a:y“‘ y¥=(x—y)s Ans. (See §21,V.)

2. -4y + 6l —4xyt +yt =(x—y)t. Ans. )

3. a2t b2 +c?+2ab—2ac—2bc=(a+b—c)% Ans. (§21,IX.)

V. Problems Solved by Placing Sets of Terms in Parentheses

After removing monomial factors from each of the expressions,
the presence of a common polynomial factor becomes apparent.
Exanpres, 8 q + 8 ab — a%bc — b2
=38a(a?+ b)—be(a +b). (28,1;19,4)
=(a?+b)(8a — bc). Ans. (Prove by multiplication.)
8a%? —4acx2—6abx +8bc="? a’x — a%by — abie + by = ?

VI. Problems Solved by Adding a Quantity

A'quantity is added to a given binomial or trinomial and then
subtracted from it, thus changing the given quantity into a quad-
rinomial that is the difference of two squares.

1) at + 4 b* =(at + 4 a?b? + 4 b4) — 4 a2b?

=[(a? +2b%) +2ad][(a? + 2 52)— 2ab]. Ans. (§21, VL)

Prove by multiplication after removing parentheses.

4mé+8lph=2 ot + 64 yhh=? PP+324="2
2. 2574 — 41232 + 16 yt = (26 24 — 40 2% + 16 ) — 228 =
(ba?+xy —4y?) (622 —xy — 4y?). Ans. (§21,VL)
Omt+38mnd+49nt =? dpt—p?+4qt="

VIL. Problems Solved by the Remainder Theorem

The remainder theorem states that if a “ polynomial in 2 (§ 9)
equals 0 when x=a, then the polynomial is divisible by * — a. This
theorem will be proved in a later chapter. (XIV.)

ExampLEs. 2%~ 423 — 2 { 4 i8 exactly divisible by z — 1,

because 13—-4x12—-14+4=0.
By what is 28 + 6 22 4+ 3 z — 10 divisible ? B -22x—-49
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24. Exercise in Factoring. As a preparation for solving the
problems of this article the student should fix in mind the fol-
lowing system for factoring composite quantities.

System for Factoring

(1) Test first for a possible monomial factor contained in each of
the terms of the given quantity, and if one i3 found, divide the given
quantity by it. Then proceed, as below, to separate the polynomial
Jactor into its prime factors.

(2) Look next to see whether the quantity to be factored is a bino-
mial, a trinomial, a quadrinomial, or a polynomial of five or more
terms.

(3) If the quantity is a binomial, it can be factored by one of the
theorems of § 23, 11, generally as it stands, but occasionally after ar-
rangement as in § 23, VI. Always try to factor the given quantity
or any of its factors by 11,1 before using the other theorems of II.

(4) If the quantity is a trinomial, it can be factored by either of the
trial methods ( page 21), ewcept sometimes when it is of the form
z* + az®y® 4 y*, in which case it may have to be solved by the method
of § 23, VL. )

(®) If the quantity is a quadrinomial, it can usually be factored by
the method of § 23, V, or 11, 1, but it may have to be solved by one
of the other methods. .

(6) If the quantity is a polynomial of five or more terms, it may
have to be solved by any one or other of the methods explained in
§ 23.

Factor the following, and, if there is any doubt of the correct-
ness of the work, test it by multiplying together the factors found,
either by ordinary multiplication or by a theorem:

1. a*—9. 2. 4 a*y 44 aby—T7 bny— T any.
8. 62427z 4 12, 4. 822 —-122* 462 —1.

5. 8 a®— 64 a’z%y~ 8. (a+b—(c—d)

7. 10,000 2* 4 80 2*. 8. ab — ba® + a*y™ — ay™.

9 422 —422—3522 10. 9 2 — 24 xy + 16 32

COLLINS’S ADV, ALG, — 38
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11.
13.
15.
17.
19.
21.
23.
25.
27.
29.
31.
33.
36.
37.
39.
41.
43.
45.
47.
49.
51.
53.
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2+1124+12. (§ 23, VIL)
21 a* — a—10.
8a8—3—-232%

a® — 32 bS,

10 2 — 30 =~ — 40.

9 atyt — 323y5 — 6 oyl
4(m —n)* — (m — n).
(m* — m?* 4+ 5)*— 25.
422 —12 2y + 99— 81.
42 +t—14.

2+ (a + b)x + ab.
mnpg + 2 + pg + 2 mn.
18 2 4+ 33 axy + 14 a2
}ab+}ab + % ab".

2 — 64 o® — 2 4 64. -
(x —y)? —14(z—y) + 40.
a(a —c) —b(d—c).
(x*+ y?— 252 — 4 oyt
am — (y —z)™.

14 (b — a®)a® — abx?.
A*— B 4 (C*—2 AC.
2+ ¥+ 32y(x+y).

H4+20—422 22+ 3. (See § 23, VIL.)

224+ 9yt 4 2522 — 6 xy — 10 2z 4 30 yz.
3a2+6ab—2ad+3ac—4bd—2cd.

162 +4a22 + 48 12
a‘d' + 64 ¢ 14.
©—6x+ 0. 16.
2 —mb. 18.
d—a—a+1. 20.
a®— 81. 22.
380 — x — 22 24.
a4 1. ) 26.
@ —b—¢*—2be. 28.
H*—3 H+2. 30.
R — m2 32.
216 — 918, 34.
8c?—6cd —5d. 36.
tab+ {ac. 38.
$2R—4m. 40.
4+ 2242 4+ 9yt 42.
2772 + 2 wrh. 44.
3 wd® +3 DR 46.
% xrh + %— . 48.
2 ma*™ — 2 mb~, 50.
asm™ — b, - b2.
1—-(x—y) 54.
65.
56. m'n — m?n® — min? + mnt.
57. 28+ b6ay—3y*—4ax+2ay.
68. v’+2ax4+a—y*42yz—22
59.
60.
61.

62.
63.

at— 8 a*m + 24 am? — 32 am? + 16 m?
a?b? — m2n?— 2 a?b — 2 amn.

a’c® — p’q® — 3 a’c + 3 apg.
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IV. FRACTIONS
25. A fraction in algebra is an expressed division.
26. Integral Quantities. A polynomial is integral if it is the
algebraic sum of integral terms, or terms that contain no letter in
any denominator. Its numerical coefficients, however, can be

fractional.
Thus, 32t —4ax®— ¢ ba — § « + 7 is integral.

27. Rational Quantities. By rational quantities are meant ratios
or fractions. The quotient of two integral quantities, each ex-
pressed without the use of radical or root signs, is called a rational
quantlty or expression.

Thus, ——;—-—zi'-'l is rational.
at—%

Since the denominator of a rational quantity, by definition, may
be 1, integral quantities are included among rational quantities.
Such quantities are said to be rational integral quantities.

28. Reduction of Fractions. By reduction in arithmetic and
algebra is meant changing the form of a quantity without altering
its value.

29. Fundamental Principle in Fractions. Both terms of a fraction
may be multiplied or divided by the same quantity without altering
its value.

Proor. Let % = any fraction, 7 = its value, and m = any number (= 0).

Then, a=br, (Since the dividend equals the quotient x divisor.)
also, ma = mhr, (By the multiplication axiom, § 36.) )
or, ma =r-mh. (By the commutative and associative laws of
multiplication, § 4.)
Therefore, % =r, (By the division axiom, dividing through by mb.)
or. me_a (Each equals ». Numbers equal to the same num-
i mb b ber are equal to each other.)

It should be observed in the preceding demonstration, that since
a and b may represent any numbers whatever, whether integral,
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fractional, ordinary irrational, as /3, or other, we assume that
they have a definite quotient, and assign r to take the place of
this quotient. When we multiply through by m, we assume that
the multiplication axiom holds true for all values of m and for
the quantities which are multiplied by it.

. 30. Signs in Fractions. To avoid confusion it is often desirable
to make changes in the signs of fractions or in their numerators
or denominators. The following simple rules should be applied :

1. To change the sign of a quantity, whether monomial or
polynomial, multiply it by the factor — 1.

2. A fraction, as + + a’ can be regarded as having three signs:

. +b

that before the fraction, that before the numerator, and that
before the denominator. Any two of these can be changed with-
out altering the value of the fraction; but changing one or all
three changes the sign of the fraction, thus changing its value.

Thus, by the rule of signs in § 5,

Notice that — ‘5' is obtained from -—a—b by changing the signs of the fraction

and of the denominator. Notice also that in— —a—b unlike signs in dividend

and divisor give a negative quotient, or — %, and then — (— g ) = g . Similar

explanations can be given for the other equalities,

EXAMPLES.
y-—x _r—y, _ c—ae _, G-c. p—29_p=—29q,
n—m m—n' 2m—n 2m—n’ 8n—m m—38n

In the example below, the sign of 22 — a2 should be changed to agree with
a —z. The change is effected by multiplying the quantity z2 — a2 by ~ 1,
. and, at the same time, changing the sign before the fraction, 80 a8 not to
change the problem.

Thus Z_ 4 202 ypecomes T —_20%
a—x x3—a? a—2 a*—ad
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3. Changing the sign of an even number of factors in the nu-
merator or the denominator or both, evidently does not change
the value of the fraction. Changing the sign of an odd number of
factors changes the sign of the fraction. Thus,

q- p)(b—a)_(p N(a=D), y—zx z—y .
c—d c—d (3q 2p)(d—c) (2p—3q)(c—d)

81. Operations in Fractions.

1. Reduction of Fractions to their Lowest Terms.

To reduce fractions to their lowest terms, factor both numer-
ator and denominator into their prime factors, and cancel all the
common factors. This operation depends on the fundamental
principle, § 29.

Exampres. (1) 8%t _2bc8,

9 a®c 8a

z2+9x+2o _FD(E+6 _(2+5)
Q= —82-28 (+HE—T) (@-1) Ans.

2 — B o B=2z+1_, 5 27a + at =
()2x+2y ? @ = Sx3 -3z ()18a—6a3+2a3

2. Addition of Fragtions.

To add fractions, or integral quantities and fractions, proceed
as in arithmetic, reducing the given quantities to equivalent frac-
tions having a lowest common denominator, adding the resulting
numerators, and placing the sum over the lowest common de-
nominator. See that the answer is in its lowest terms.

To reduce fractions or integral quantities to equivalent fractions
having a lowest common denominator, write 1 for the denomi-
nator of all integral quantities; then divide the lowest commion
denominator (or quantity of lowest degree in which each of the
denominators is exactly contained) in its factored form by each
of the given factored denominators in turn, and multiply both
terms of the several fractions (§ 29) by the respective quotients.

Exampies. (1) 34+§+3+4="? @ H-—1="?
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2 -3x+2 .
g L 2 3=2? Check with z = 2.
(3) P 21 + ck with 2
SorurioN. The l.c. d. (lowest common denominator) is (z+ 1)(x —1).
The denominator of the integral quantity, 3, is 1 understood.

(Dividing the l. c. d. by
i the denominator of
z(z —1) ?—3x+2 8*—1) each fraction, and
(x+1)(x— l) (x+1)(x-1) (@x+1D(x-1) then multiplying
both termns by the

2—x—(22—32 +2)+3x2—8 quotient, § 29.)

@ +1)@—1) : (Indicating the addi-
tion of the numera-
tors and placing the

322 4+2x -6 - Bz+6)(z—1) =8x +5 Ans. suin over the common
(x+1)(x—1) (x+1)(=x-1) z+1 denominator.)
(Simplifying and reducing to lowest terms.)

CHECk. Letx =2,

s . 2 -8x 42 --6+2
Given quantity = —2_ — 3=C~-2"""—""T243=38%
antty = T @ o1 T 3 -1 Te=8
Answer — 3z+5_w_32 v
z+1 2+1

a. In checking, values that make any denominator 0 must be avoided.
Thus, 2 = 1 could not have been used in the preceding problem.

Throughout fractions it is desirable that the student make considerable use
of checking, since this is the best means available to uncover mistakes in per-
forming operations.

()a+x+a— +4ax_? (6) m— m+n+n__? (6) a?—

—-1=?
-z a+x a-

—-b8
a

8. Multiplication and Division of Fractions.

To multiply fractions, factor both terms of every fraction into
their prime factors, cancel any factors common to numerators and
denominators, and multiply together the remaining factors of the
numerator for the numerator of the product and the remaining
factors of the denominator for the denominator of the product.

Cancellation of factors in numerators and denominators evi-
dently depends on the principle that both terms of a fraction may
be divided by the same quantity without altering its value.

In division of fractions invert the divisor and multiply.
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a‘zz—z" 3a
X 2="9
2ax — 2 x?

Exampres. (1)

SoLurion, O+ ?}ﬁa’(ﬁ x Z ‘ﬁi\f’ﬂ X 2= 3(“;' 2. Ans.

_x*4+b5x4+6_  r2-9
@ #—-1 = x2—-2z-8

(24 (x+2) _fz=%(x+1) _z+2 Ans.

SoLoTION. =
,(;M/l')(x—l) (8@ +8) x—1
ab?  c*d _L =9 4 2ar —x? 4a2—23
@ xar ¢f X ab ® ax+a* 3z+3a

4. Complex Fractions.

A complex fraction is a fraction that has a fraction in one or
both of its terms. It is an example of division of fractions, and
can be solved as such. However, complex fractions can often be
simplified much more quickly by multiplying both terms of the
fraction by the lowest common multiple of the denominators in
both terms.

e, b b

Exampres. (1) :+$ %—H—g
z

’ 1 1 1

(Multiplying both terms by xyz.)

x+x 3 - x + =?
@ —Z—S=p @ =Y _TTV., 22+
x—-=T -y 8z +2
z—3 r—y 4

5. Fraction to Mixed Quantity.

A mixed quantity consists of an integral part and a fractional
part. . A fraction can be reduced to a mixed quantity by dividing
the numerator by the denominator and adding the remainder di-
vided by the divisor to the quotient.

Exampres. (1) ‘lzaLb =a +Q. Ans. (8) ab + b2 =9
a a

2 __6x+3 b "‘+1
9) L0242 _ . 4 . Ans. 4
) 7_2 73 4) —
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32. Type Forms in Fractions.

1, 2 _ma 9. @4 b_at+b 5 a b_a—b
b mb c ¢ c c ¢ c
b ac+b a,c_ ad+be a ac
4. -—= . —t-= . - = —
== b 3tdT sd % 5%X°=%
a_. ,._4a, a c_ac a,c_ad
L™ 8 3%Xd~bd R
a
b6 a ¢ a a a b ac
10 _——— e = — 11. —m = e
e b 1 be é 1 ¢ b
¢
a
6 a ¢ a d ad
12. _g'=_b—17=5x2=_c‘
d

18. Translate the foregoing formulas into principles or rules.

33. Exercise in Simplifying Fractional Expressions.

at— b a—>b 3at+3ab
1. ——- Ans, ——. Q. 2= TV
@+oy " et @+ ab®
g P & -8z 2284172421
T —2ax+ at Tat—dax--5 8224262+ 35
z+3 x—2 w—4_m+3 15—-a:_
8. 1 5 + 10 6 Ans. 0
T 2245 x+4+3_ 27 8 a’—b’_ac—b’+ab—c’
) x 22 82 T be ac ab
x—4 x—T y x
9 — = — 10.. < .
z—2 -5 x(x’—y’)+y(x’+y’)
b3 m2+n2
. - 12. m ———— 1.
1. a+d a®—ab+ b » " m—-l+n+
13, ©=52+6, 14, 1 2

#-Tatl2 D3 D2



15.

17.

19.

21.

238.

25.

27.

29.

31.

33.

34.

36.

36.

37.
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a’b’+3ab+ab+3. 16 3—x 34z 1—16=
4at—1 " 2a+41 "1-8z 143z 922-1
3 2 4 bt 2 3 _22-3,
1%\ ¥ +0 L2
( b‘)+ ab 8 i1 do—1
1—G)? 1 1 3
1—)+ L= 4, 1 _
( ) @ E—1 R+2 (R+2y
oz —a 1
(a+m)z' x’+;’+2
— 22, ——
at — 2 z+1
x
a+b+a—b a+z a—w
ctd c-d oz ataw
ath,a-2 YTy
¢c—d c+d —_—

a—r a4
m’+wy 2 — P

F+y @ty 26 (52—”—”+ )( §+1)-

a?

( —%‘>+(w+5>' 28. 5 __2

R—p e—t r—3 a:—4_(:v—-2)(x—5)

7 SR 2Rr4n gy O P

1 wa—bycza 1 azbz+lca
q+1. 2a _ 1 " 1 .
1+n-—-q 32. #+ar+1l a*—a+1 ' a+a+1

98z —27T\/1 3x+ 29 .

(4“”+14”+—2 7 )(6 12z=,+18x+27>

ta@—=)  [a*—as (ata)]
3b(ct —a%) [bc+bxx(c—x)’]

2a z—a + 2
(x—2a)? #*—bax+6a® 2—3a

1/ 1 1 N\_ 2

b\a—b a+20 at+4ab— 20
ot —at @ +ax)  2¥—a%

[::c’—-2aw+a" z—a | B+ad




CHAPTER 11
REVIEW OF EQUATIONS

1. SIMPLE EQUATIONS CONTAINING ONE UNKNOWN
QUANTITY

84. An equation is a true statement that two quantities have the
same numerical value (§ 11).

Equations are of two kinds, identical and conditional (§ 1).

A conditional equation is one in which the two sides have the
same numerical value only upon substitution of a certain value,
or values, for the unknown number. .

We are to study conditional equations in this chapter.

The values just referred to are called the roots of the condi-
tional equation. To find these roots is called solving the equation.
Showing that a value found for a root is a true one is called veri-
fying the root. Such a root is said to satisfy the equation.

A literal equation is one in which one or more of the known
numbers are represented by letters.

35. Equations Classified. Equations may be classified according
to their degrees.

The degree of a term is the sum of the exponents of its literal
factors. Thus, the degree of 6 a®?® is 5.

The degree of an equation containing one unknown quantity is -
the greatest exponent of this unknown in any term, both sides or
members of the equation being integral quantities,

Thus, dx4+4=T2—5is of the first degree.

42452+ 6=22%—9is of the second degree.
az® 4+ ba? = cx — d is of the third degree.

An equation of the first degree is also called a simple or linear
equation. An equation of the second degree is called a quadratic
equation. Equations of the third, fourth, fifth, etc. degrees are
called cubic, quartic (or biquadratic), quintic, etc. equations.

32

.
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36. The Axioms. An axiom is a statement assumed to hold true
and used as a basic principle in a study.

The solution of equations depends in large measure on the use
of the axioms.

1. Identity Axiom. Quantities equal to the same gquuntity are
equal to each other. (See § 6.)

2. Addition Axiom. FEgquals added to equals give equals.

3. Subtraction Axiom. Equals subtracted from equals leave equals.

4. Multiplication Axiom. FEquals multiplied by the same quan-
tity, or by equals, give equals.

5. Division Axiom. Equals divided by the same quantity (not 0),
or equals, give equals. .

6. Power Axiom. Equals raised to the same power give equals.

7. Root Axiom. Corresponding roots of equals are equal.

8. General Axiom. If only real positive quantities are considered,
the same operation performed on equals gives equals.

The axioms will be referred to as ¢« Add. Ax.,” ¢ Mult. Ax.,” ete.

37. Solution of Simple Equations.

A simple equation is solved for the unknown by first «clearing
it of fractions” (if any appear); next, “transposing” all the terms
containing the unknown to the left “ member” or side, and the
other terms to the right side of the equation ; then, combining simi-
lar terms in each nember, and, in literal equations, factoring the
left member so that the unknown is one factor; last of all, divid-
ing both members by the coefficient of the unknown.

Clearing of fractions always depends on the multiplication
axiom; transposing on the addition or the subtraction axiom;
and dividing on the division axiom.

To clear of fractions, each side of the equation is multiplied by
the lowest common denominator. Thus, each term on both sides
is multiplied by the lowest common multiple of the denominators,
and this cancels all the denominators on both sides.

To transpose a term, it is subtracted from both sides of the
equation ; or, the term with its sign changed is added to both sides
of the equation.
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1. Solve the equation 5_31 5:1’ 38 = —2, and verify root.
SoLuTION. L.c.d. = (n—3)(n + 2).

Br—1)(n+2)—(5n+28)(n—8) =—2(rn—8)(n + 2) (Mult. Ax))
302+ 6n—2—(65n2+13n —84) =—2(n?—n—06) (Multiplying.)

bn—~18n—-2n=2—-84+4+12 (Sub. Ax.)
—-10n=—-170 (Adding.)
n="1. Ans. (Div. Ax.)
VERIFICATION. 8x7-1 EX7+28_.—2 orb—T=-2,
7-8 T+2
2—8 -2 3xz—21 ° x x, @
2. - = . 3. Z=-2= -—1.
2 3 12 27475
11— 26—z x—2 -3 a2—
4. = . 5, —_———— A = e
T+ =3 2 5 10

38. Exercise in Equations Containing One Unknown.

Solve and verify the answer in the following:
§_5x+4;4x—20. 2. a:—1=7_4+w_23—a:.
3 3 6 -7 4 5

8. 2(16 —2) +3(bx—4) =123+ ) — 2(12 — ).

4. Bx+1y 4+ T(z+3)'=12(z + 2)%

1

' x 4 ' 6z+3 3z—1 _22—9
. =1. 6. =
8 w+"+a:+6 15  52—26 5
7_23—-t_ t—1 p+4  p+b
. = —_ 8.
B T 3p—8 Bp—7
9. ?n+7 6n— 2‘ 10. 4 + 7 — 37
4n+8 8n-5 z+4+2 243 2245246
1 2 1 1
. —_— - 14 1. :—-—=—'
11 5_1 7 (§31,4) 2. 3 311
x 3t
13. §+n—3=n+1. 14. §_ﬂﬁ=_§;__%.
n n4+3 n—1 4 z+4+3§3 =+%
y N n 22419 17 3
) n_10-". 16.
15. 3+43=10-7 54—5 #—1 1-%

17. u=3u—}(4—u)+} 18. }(d+32) -3C2zx—})=3L




SIMPLE EQUATIONS 35

19. }(3—3)—$(s—8)+4(s—5)=0.

20. (z—1P 422+ (2 +1)*=3a(a® —1).

2l (@+§)(x—%)— (x+5)(z—3)+§=0.

22. (41 =§{6—(1—2x)}x—2. See§13, 2

2:'.’—z‘-l—3_2z’+3:az—1_3—62:—2022

32+2 3z—2 974

2+3 + 1 — 2x—1

2*—8) 6(x—2) 3(@*+2z44)

26. ar—b=cx +d.

SoLutioN. axr—cx=>b+d. (Sub. Ax., putting unknowns on left side

and knowns on right side.)

(a—c)x="b+d. (Factoring in left member.)

z=2%2  (Div. Ax.)
a_—
VERIFICATION. a(b +d\ _ b= b +d +d (Substituting its Vflllle
a—c for z in the given
equation. )

+ d. (Multiplying.)

23.

24.

abtad . _ bc +cd
a—¢C
ab+ ad - b(a—c) = bc +cd +d(a—c). (Mult. Ax)
ab + ad — ab + be = be + cd + ad — de.
ad 4 bec = ad+ be.
In the following, solve in each case for the last letter of the
alphabet in the problem :

26. ar+bx=ac. 27. my+n*y=p>. 28 br+42axr—a=3 ax—2c.

29. T -1=0_9 30, L+Z_a
x x l—-2 b
U, u 142t _a

3l. —4-—-=c. 32. = =
atr=¢ 1—3¢ 5

g3, vta_1 sq T2 _b_z—b a
v—-bb m b a a b

39. Solution of Applied Formulas for any Letter. The following
formulas come from arithmetic, geometry, physics (including
sound, light, heat, electricity), shop work, trigonometry, engineer-
ing, ete. They are all solved by use of the axioms in much the
same manner a8 the equations of § 38.
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Solve the following formulas for each letter in them (excepting
known numbers like ) not given directly :

1. s=ba (area of a rectangle = base x altitude.)

SovurioN. ba =35 (Reversing members.)

a=%- Ans. (Div. Ax.). b="2%. Ans. (Div. Ax.)
a

b a a
= 3. = . = -
2. ¢ A 8 % 4. ¢ 5
5. d=%’- 6. w=fi ) 7. ¢=pn.
8. a=3}bh 9. A= mab. 10. ST=st.
1 Wa wdn
11, t==. 12 F=—. 13, l=—-
k g 360
PV_PV nCN vV
. —— == . =, 16. = —e
U o= 15. E="0 6. B=3+
17. PX P, xS,= Wx W, xs,. 18. b=1.155(f—0.2)
P dr
19. =0.3788 GT. 20. — = . 1. =b(1 .
R G W3R 21. a=>b(1+7)
22. a=p(l4rt). 23. v=4N(I+7r). 24 Mis=M'3s.
2 PLAN
26. d=d'+=. 6. A=1a(db+V"). 27. H="_1".
+p 2 }a(b+0") 33000
SE
28. O=—-—""—.
Sb+R

SoLuTioN FOR 8. SCb + CR = SE. (Mult. Ax.)
8SCb— SE = — CR. (Sub. Ax. Unknowns to left,
knowns to right member.)
S(E —Cb)= CR. (Changing signs, Mult. Ax., and
factoring.)
8= E—‘-—ﬁ(])% Ans. (Div. Ax.)
Other answers:
ShC+ RC SE— 8hC SE—-CR
= s R= ; b= .
E s B c '’ cs
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EP SEP s
9, = . 80, c=—2"0 31, R=_9%_.
2. 0= Fp ‘= Sb+ kP E=2"0
r—a W P_ p
. 8= . 33 S=-—_"_. L= .
3 o= w_w . * W iaR
1 1 1 w 2R—-h 1
3. ===+ " 36. S= L 37. —_——
F D+D' Wy + Wy — w, 4 h 2p
38. P_+1’=£'. 39, 1="P+mD\ 0y 40, q=2"—4.
P P 2 n
1 1,11
41, §=;+;’+1T". 42. ms(t-—-t.):m’s’(t'—t').

Pupils should examine geometries, books on physics, and shop
mathematics for similar formulas, and solve those found for any
letter. But if in any formula the unknown appears to the second
or higher powers, the method of solution is different from that
here explained. It will be given later.

40. Making and Using of Formulas in Arithmetic.
1. If b represents base, r rate, and p percentage, make a
tormula giving the value of p. Solve this formula for b; for .
a. The word rate means ratio, that is, the ratio of the percentage to the

base ; or, if r = rate, r = £b In the solution of problems it is often preferable
to let r9%, or %—0 = the rate, thus making = ordinarily an integral or mixed

number, rather than a decimal. Then T:):G = 1;

Solve the following numerical problems by substituting in the
appropriate formula:
2. A trader having $1960 spent 15 % of it. What sum did
he spend ?
3. If T sell § of a carload of wheat for what § of the whole
carload cost, what is the gain per cent ?

SveeesTioN. Find first what part of cost whole carload would be sold for,
and then find gain.
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4. 683 is 9} % of what number ?

5. If b represents base, r rate, @ amount, or sum of base and
percentage, and d ¢ difference,” or base less percentage, write a
formula for value of a; also a formula for value of d. Solve the
latter for b.

6. A has $3009, which is 18 ¢ more than B has. How much
has B? Also A has 159, less than C. How much has C?

7. If p represents principal,  rate, £ number of years princi-
‘pal bore simple interest, and a amount, make a formula giving
the value of a.

a. This formula can be used to solve any problem in simple interest.

8. Find the amount of $520 at 59 for 4 yr. 4 mo. 24 da.
by using formula.

9. Find the rate when $1652.64 is amount, principal is $1320,
and time is 3 yr. 7 mo. 6 da. Solve the formula for # first.

10. Find the principal when the amount is $279.18, rate is 3 %,
and time is 1 yr. 1 mo. 6 da. Solve the formula for p first.

11. Find the time when the amount is $1148, the rate is
4} %, and the principal is $1025. Solve the formula for ¢ first.

12. Potatoes whose value was p dollars were shipped to a com-
mission merchant to sell, who charged r ¢, for selling or buying.
With proceeds from the sale of the potatoes he was instructed

.to buy salt. 'What is the value of the salt he should ship back ?
Suppose p=3198 and r = 2}.

13. If goods that cost $c are sold for $s, what is the rate per

cent r of gain? Find rate r when ¢ =450, s = 531.

14. Goods that cost c# were marked to sell at m#, but ' ¢
was thrown off from the marked pricee. What was the actual
gain per cent r ?

Given ¢=8, m =12, ' =163, to find .

15. Three discounts of r %, s%, t 9, were taken from a bill of
$b. What was the net cost ¢?
Given b= 2250, r =20, 3=15,t=38, to find c.
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16. Find the amount $a of a note of $p which drew simple
interest at 7 % for » yr. m mo. d da., assuming 12 mo. of 30 da.
each to a month. Then find a when p =400, r=6, n=3, m=9,
d=13.

17. Find B’s tax $¢ on $p worth of property when the total
assessed valuation is $.4 and the tax to be raised is 7" Find ¢
when p =4000, 4 =1,946,500, and 7'= 33090.50.

18. Find the insurance premium $p to be paid on a house valued
at $h when insured for v % of its valuation at an ¢ rate. A
carriage factory and stock worth $40,000 were insured for 90 %
of their value at 34 %. TFind p.

19. What is the bank discount $d on a non-interest-bearing
note for $a if discounted at r %, n days before it is due? Find
discount $d on a note for $300 discounted at 7 % 45 days before
it was due.

20. A railroad stock is quoted at n 9% above par and its annual
dividends are r %; what interest rate R is realized by an investor ?
Suppose n =28, r =38, to find R.

21. What is the duty on n yd. of cloth worth $¢ a yard, taxed
at 9% ad valorem, plus a specific duty of s¢ a yard? What
would be the duty on 75 yd. of cloth worth $2 a yard, at 55%
ad valorem, and 11f a yard ?

22. The interest on $« for ¢ yr. and m mo. at a certain rate per
cent was $7. What was the rate? Find rate when t=2, m=3,
1=69.75, and « = 620.

23. The population of a town in 1900 was p and in 1910 it was
g. What was the gain per cent »? Make the calculation for the
following cities :

y [
Cleveland, O., 381,768 560,663
Atlanta, Ga., 89,872 154,839
Seattle, Wash., 80,671 237,194
Los Angeles, 102,479 319,198
New York, 8,487,202 4,766,883

COLLINS’S ADV. ALG. —4
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' II. SIMULTANEOUS EQUATIONS

(If desired, §§ 116-128 on graphs can be taken up at this time, or
after § 45.)

41. Simultaneous equations are groups of equations that are
satisfied by the same set or sets of values of the unknown quanti-
ties. ‘

Such equations are solved by elimination. One or other of two
methods of elimination is commonly used, viz., substitution, or
addition and subtraction.

42. Elimination by Substitution. This is accomplished by finding
the value of one unknown from one of the given equations and sub-
stituting this value for the same unknown in the other equation.

a. For convenience of reference the equations are numbered (1) and (2),
and their changed forms, (1;), (21), (12), ete.

r(l) T _ 8 to find values of z and y
L Given z—3 y-—b5 that satisfy both equa-
) @) 9 __ & tions.
22—1 3y+ 4’
SoLurroN. (1y) Ty—856=8x—24 (Mult. Ax.)
(1) Ty=8z+11  (Sub. Ax.)
(1s) y= QL;*LI (Div. Ax.)
(21) 27y+38=102—56 (Mult. Ax.)
27 (Q_;J) 136 =10z —5  (Substituting value of g
21624207 +262 =702 —85  (§ 31, 8, Mult. Ax.) -
146 x = — 584 (Sub. Ax.)
x=—4. Ans. (Div. Ax.)
(1) y = ““7& = —8. Ans. (Substituting —4 for .)
7T _ 8 . 9 _ 5
VERIFICATION, (1)_ 1-8=3-% 2) T3-ic o440
. {(1) 9z 4+8y="5T, s {(1) dz—3y=26
" 1(2) 62+Ty=48. " 1(2) 3z—4y=16.
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1) o 4¥—=9_
. {(1)4;w+%y=6, . @) = o =
" 1) 1 =5. ) 9 5
@) te+1y ) 5_‘”_‘;"=_3y.
9 B 3 m;—n m;n_?”
6. 3 p--2’ 7. 3
u+o v m—n, m+n_,
5(u+3)=3(v—2)+2. ot 0
2—2y=a, N (e
22+8y=>. mx 4 by =d.

10. Solve for a and d as the unknowns in
@) p=a+(m—1)d @) g=a+(n— 1)d.

43. Elimination by Addition or Subtraction.

i
J) 4 + 5 5 to find values of « and y which

1. Given satisfy both equations.

@Z+y=15

SoLution. (1;) 6z + 4y =100 (Mult. Ax.)
(2) 2x+8y=54 (Mult. Ax.)
(1) 10z + 8y =200 (Multiplying (1,) by 2, Mult. Ax.)
(22) 102 + 15y =270 (Multiplying (2;) by 5, Mult. Ax.)
Ty= 70 (Subtracting (1) from (2;), Sub. Ax,)
y =10, Ans. (Div. Ax.)

(21) 22+ 8 x 10 = 54. (Substituting its value for y.)
N z=12. Ans.
VERIFICATION. (1) = + —159—5 @2 2 );12 + 10— 18.

2. Rule. After reducing both equations to the form ax + by = c,
each equation i3 multiplied by such a number that the coefficients of =
(or y if easier) are made the same in both new equations. Then,
one of these equations is subtracted from the other when the equal
coefficients have like signs, or added to it wheh the equal coefficients
have unlike signs,
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1) 22+3y=18, {(1) 4248y=24,
"1@38r—2y=1. " 1(2) 1022—6y=2348.
y_14 445y
m+3—'3) 1) 10 =T—Y,
4z _2y 4 - & 2¢ —y 1
35 @)=~ —2v=53
az +by =p, Yo+ =2q,
{am+dy=q 8. [a+b a—b
u—v=4ab
{a’u+b’~v=c’, 10 ax 4 by =a? 4 b3,
adu+bv=c T \be4+ay=2ab. -
§+§=3’ SuceestioN. Do not clear of fractions in
11. a:15 y 3 this problem but solve directly for i— and -!1, .
T‘l‘;: . Then, at the last, find z and y.
6 7 7,3
2"y =Y
12. .
2,14 315 o
-4 —=9. =2 =T
z ¥y acr by

a. Elimination by Comparison, a third method, is less important than
the others. It is performed by finding the value of the same unknown from
both equations and setting these values equal to each other.

44. Special Methods of Elimination. Instead of eliminating
immediately, it is often better to proceed, as in the following solu-
tion, to get a third equation with smaller coefficients. Equation
(1) is multiplied by 4 and equation (2) by 3. By subtracting (2;)
from (1,), we get (3), in which the coefficient of 2 and of y is 1.
This new equation can now be combined with one of the old equa-
tions, or with another new equation obtained in a similar way.
Any pair of such equations are said to constitute a system, since
they suffice to find the values of the unknowns.
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1132 —29y =97,

1. Given (2) 172 — 39 y = 129, to find values of z and .
SOLUTION. (1) 52z — 116 y = 388 (Mult. Ax.)
(2)) 51z — 117y = 887 (Mult. Ax.)
3 =+ y=1 (Sub. Ax.)
(B)18z + 13y =18 (Ax.?)
) 18z — 20y =97
: 2y——84 (Ax. ?)
y=—2. Ans. (Ax. ?)

3 z2+(—2)=1; £=38. Ans.

VErIFICcATION. (1) 18 X3 —29 (—2)=97; (2) 17x8 — 89 (- 2)=129.

(a) If the student will solve this problem by the regular process of solu-
tion, that is, by multiplying (1) by 17 and (2) by 18, he will find that the
labor of solution is two or three times as great as that of the preceding
solution. Evidently the plan is to multiply both members of each of the two
equations by two small numbers so as to bring the corresponding coefficients
close together in value instead of to make them equal.

2. () 1le—21y=26; (2) 21z—40y=>50.
3. (1) 192+ 35y =127; (2) 28 + 53y =190.
4. (1) 282 +29y=—1; (2) 292+ 23y =53.

SucaestioN. Add and divide through by 62, getting (8) ; then subtract
and divide through by 6, getting (4). Use (3) and (4) to finish solution.

45. Systems of Equations. Equivalence. Two systems of
equations (§ 44) are equivalent when one set can be derived from
the other by axiomatic processes, and the values of the unknowns
obtained from each set are the same. Thus, we saw in the last
article that values of the unknowns derived from using a new
third equation together with one of the given equations verified in
both of the given equations; also in Ex. 4, that values of the
unknowns obtained from the two new equations (3) and (4) veri-
fied in the original equations.

It may be said here that, in general, throughout simple equa-
tions, values of the unknowns found from a set of derived equa-
tions will verify in the original ones. Nevertheless the student
should make it a rule to test all answers by substituting them in
the original equations.
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46. Simultaneous Equations Containing Three or more Unknowns.

1) 22+3y— 2=21, to find values of x, y, z
1. Given {(2) 62— Ty + 52z = 55, which will satisfy each
(8)9z+5y—22="71, . of these equations.

SorurioN. Of the unknowns z is most easily eliminated.

(1) 10x+ 15y — 52 =105 (Mult. Ax.)
(2) 6x— Ty+62 56

4) 16z+ 8y =160 (Ax.?)
(4) 22+ y = 20 (Ax.?)
B) 9z+ by—2z2=1T1
(13) 424 6y—22= 42 (Ax.?)
6) bz— vy = 20 (Ax.?)
4) 22+ gy = 2
Tx. = 49 (Ax.?)
z = T, Ans. (Ax.?)
(4) 2xT+y= 20. (Substituting its value 7 for z.)
: = 6. Ans,
(1) 2x7+8x6—2=21. (Substituting their values for z and y.)
z=11. Ans.
VERIFICATION, (2) 6x7—7x%x645x 11=55,

(8) 9xT+6x6-2x11=7L

4z —-3y+4+2=9, 1214+ 5m —4n =29,
2. {924y —52=16, 8. {131 —2m 4+ 5n =258,
2—4y+3z=2. ' 171 —m — n =15.

4. Make a rule for solving sets of three simultaneous equations.

‘t7. Exercise in Solvingy Simultaneous Equations.
524+6y=17, 6x+417 y =35,
6z+45y=16. 142—-3y=39.

122—6y=S8, 17a —-18b =152,
482 —9y=92. b5a—12b=22.
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v4t—6u=—130,
Su+v—t=7T6.

2p—-3¢9=3,
3q—4'r=7,
4r—-5p=2.

i
{

I
|
|
I

[

[y

N 1w
I
[=]

10.

|
Mo W
|

Bl R |IW 8
+

N
w

32—by_o_2z+y
2 7’

te—ty+iz=3
8 {lrx—iy+i2=1,
te—3y+32=5

SuceesTioN. Eliminate ¢, using
(1) and (2), getting (4). Then take
(3) and (4) together.

Succestion. Do not clear of the
denominators, but solve directly for
111

2y 2 and then get z, y, 2.

11. (1) ax4+dby=c; (2) mx+ny=p.

(21) amx 4+ any = ap
(1) amz + bmy = cm
any —bmy =ap—cm

Y= ap — cm Ans.
an - bm

cn—bp +p.p—Cm

SoLuTiON
(12) anx + bny =cn (Ax. ?)
(22) bmax + bny = bp (Ax. ?)
anx — bmx = cn — bp (Ax.?)
X S T

an — bm

VERrIFicATION (1) a-

an — bm

¢
an—bm -~

or, acn — abp + abp — bem =acn — bem.  (Mult. Ax.)

12. 1) ax—by=0; (2) x+y=c = .
13. 1) +ay=>5; (2) ax—by=c. .
14. (1) Bax—2by=c; (2) d’x+ by =25 be.

= b
15.{ac+.1/ a+b,

ax — by =b*—dl,

az + by =m,
b —ay=c.
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(2 _Y_m z+1_at+b+1
b Jo® ’ 18. {y+1 a—-b+1
.
Z,Y_ . r—y=2b
(¢ d
(e—y y+2z_ 3_4 1=§
7 5 b s Byt "B
Yy+2z,2—x_ 20. ‘l i. g=§1.
19. 1Tt =0+ 3272y 72 6
— —- 4 1,4 161
z—x_ -y 4 1 4_161
(71 g 7% Bs 2y Tz 10
SvaeestioN. Eliminate z first.
(824+6y+22+u=2, Combine (2) and (3), eliminating 2,
t—y—3z—4u=3, getting (6). Then combine (1) and
21. 2 2 2 (2), eliminating z, getting (6). Then
z+2y—22—-2u=0, o npine (83) and (4), eliminating z,
(224+y—2—3u=>5. getting (7). Then solve (5), (6), and

(7) as in preceding problems.

III. PROBLEMS

48. Problems in Equations. There are two parts to the solution
of a problem in algebra:

The statement, or construction of the equation or equations.

The solution of the equation or equations.

In the solution of a problem, four steps may be deseribed :

(1) Reading the problem carefully, getting all its conditions in
mind, and letting a letter, or letters, represent its unknown number or
numbers.

(2) Constructing the functions, or expressions involving the un-
known or unknowns, described in the problem.

(3) Writing as the members of an equation two different expres-
sions, which are said in the problem to be equal, repeating this pro-
cedure if there is given another equation or equations.

(4) Solving the equation or equations found, and verifying the
answers by seeing if they satisfy the reading of the given problem.
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The choice of the number of unknowns to be used in the solu-
tions is left to the student.

1. A grocer has two kinds of kerosene oil, one worth 12 ¢, and
the other 15¢ a gallon. How many gallons of each shall he take
to make a mixture of 55 gal. worth $7.20?

2. The garrison of a certain town consists of 125 men, partly
cavalry and partly infantry. The monthly pay of a cavalryman
is $20, and that of an infantry man is $15, and the whole
garrison receives $2050. What is the number of cavalry and of
infantry ?

8. If a certain number is multiplied by 5, 24 is subtracted
from the product, the remainder is divided by 6, and this quetient
is increased by 13, the result is the number itself. What is the
nunber ?

4. What is the property of a person whose income is $ 860,
when he has § of it invested at 8 %, } at 6 %, and the Temainder
at49 ?

5. A farm laborer engaged for 48 days at the rate of $2 per
day and his board. But for every day he might be idle, he was to
pay $1 for his board. At the end of the time he received only
$42. How many days did he work ?

8. A tree standing vertically on level ground is 60 ft. high.
Upon being broken over in a storm, the upper part reached from
the top of the trunk to the ground just 30 ft. from the foot of the
trunk. What was the length of the part broken off ?

7. A boatman who can row 5 mi. an hour in still water rows a
certain distance upstream and back in 4 hr. How many miles up-
stream does he go if the stream itself flows 3 mi. in 2 hr. ?

8. Two men 27 mi. apart, setting out at the same time, meet
in 9 hr. if they walk in the same direction; but if they walk in
opposite directions, that is, toward each other, they meet in 3 hr.
Find their rates.
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9. Two men, A and B, 330 mi. apart, set out in automobiles, B
45 min. after A, and travel towards each other, A at the rate of 20
mi. an hour and B at the rate of 15 mi. an hour. How far will
each have traveled when they meet ?

10. The area of the United States in 1850 was 559,452 sq. mi.
more than 3 times what it was in 1800. By 1910, exclusive of
Alaska and the islands, it had increased 45,535 sq. mi. over what
it was in 1850. The total increase from 1800 to 1910 was
2,260,675 sq. mi. What was the area of continental United States
at each epoch ?

11. The population of continental United States in 1850 was
383,408 less than 6 times what it was in 1790, and in 1910 it was
795,238 less than 4 times what it was in 1850. The increase from
1850 to 1910 was 10,992,404 more than 3 times what it was from
1790 to 1850. Find the population at each date and verify.

12. Of the six great continents Australia has 386,000 sq. mi. less
area than Europe. Africa has 14,000 sq. ini. less than three times
the area of Europe, and North America has 2,081,000 sq. mi. less
than Africa. South America has 828,000 sq. mi. less than twice
the area of Europe, and Asia has 769,000 sq. mi. more than both
Americas. The total area of all these continents is 52,153,000 sq.
mi. Find the area of each continent.

13. If the smaller of two numbers is divided by the greater,
the quotient is .21 and the remainder .0057 ; but if the greater is
divided by the smaller, the quotient is 4 and the remainder 1.742
What are the numbers ?

14. Fifty laborers were engaged to build a bridge on a railroad.
Some of them were to receive $2.50 per day, and others $5.
There was paid them $150. No memorandum having been made,
it is required to find how many worked at each rate.

15. If a certain number is divided by the sum of its two digits,
the quotient is 6 and the remainder 4. If the digits are inter-
changed and the resulting number is divided by the sum of its digits,
the quotient is 4 and the remainder 6. What is the number ?

SuceesTioN. Let 10  + y = the number.
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16. If the sides of a rectangular field were each increased by 2
yd., the area would be increased by 164 sq. yd. If the length were
increased by 5 yd. and the breadth diminished by 5 yd., thie area
would be diminished by 65 sq. yd. What is the area ?

17. A cistern can be filled by two pipes in 9 min. and 12 min,,
and emptied by two others in 15 min. and 18 min. respectively.
After the first pipe had been running one minute, the third was
opened ; at the end of the second minute.the second was opened ;
and at the end of the third minute, the fourth was opened. With
all the pipes running, how long would it take to fill the cistern,
counting from the time the first pipe was opened ?

SueersTiON. “ Work,” “ cistern,” and similar problems are solved by use
of reciprocals. Thus, if it takes 9 minutes to fill a cistern, § of the cisternful
runs in in one’minute. The cisternful is the unit in terms of which the mem-
bers of the equation are expressed.

18. If A and B can perform a certain work in m days, A and C
in » days, and B and C in p days, in what time can each perform
it alone ?

Svceestion. See Ex. 11, §48.

19. Railroads join four cities A, B, C, D, thus forming a quad-
rangle. If I go from A to D through B and C I must pay $6.10
fare. If I go from A to B through D and C, I must pay $ 5.50.
Going from A to C through B I pay the same as from A to C
through D. On the other hand from B to D through A costs 40¢
less than from B to D through C. What are the distances AB,
BC, CD, DA if the fare is 2¢ a mile ?

20. A; B, and C in a hunting excursion killed 96 birds, which
they wished to share equally. In order to do this, A, who had
most, gave to B and C as many as each already had; next B gave
to A and C as many as they each had after the first division; and
lastly, C gave to A and B as many as they each had after the
second division. It was then found that they all had the same
number. How many had each at first ?
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21. A man distributed a cents among n persouns, some receiving
b cents each, and others ¢ cents each. How many received b cents
each, and how mauy ¢ cents ? ,

22. A was m times as old as B a years ago, and will be » times
as old as B in b years. Find the age of each at present.

23. A and B can do a piece of work in a days, or if A works m
days alone, B can finish the work by workmg »n days. In how
many days can each do the work ?

24. A man invested p dollars, part at r per cent, and the re-
mainder at 8 per cent. His annual income from both investments
was ¢ dollars. What was the amount of each investment ?

25. Two trains are scheduled to leave A and B, d miles apart,
at the same time and to meet in % hours. If the train that leaves
B starts b hours late, and runs at its usual rate, it will meet the
other train in k hours. What is the rate of each train ?

IV. INDETERMINATE EQUATIONS

49. Indeterminate Equations. Thus far as many equations have
always been given as there were unknowns in the equations. When
there were two unknowns, two equations were given; when there
were three unknowns, three equations were given, and so on.

If the number of given equations is less than the number of
unknowns, we have what are called indeterminate equations.
These equations can have an indefinite number of values of
and y. Thus, we can assign x any value and get a corresponding
value of y. They are solved sometimes for integral values of the
unknowns, but the method of solution is altogether different from the
solution of determinate equations. We will solve a few of these.

Get all the positive integral solutions in the following problems:

1. Separate 71 into two parts, one of which is divisible by 5
and the other by 8 without remainders.

SoLutioN. Let 5z = one part, and 8 y = other part.
Then 5z + 8y = 71 is the only equation obtainable.

Solving, we get z = ?1—;—81
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Now, by the conditions of the problem, x is"a whele number. Then
7—1—_5&, orl4—y+ %! (§ 31, 6), is a whole number.

But as y must be a whole number, making 14 — y a whole number, then
%lalsomust be a whole number. Then 2 x l-:sﬂ=2———5ﬂ is a

whole number. (We multiply by such a number that when we divide
by the denominator, the coeflicient of y in the remainder is 1.) Then

2—

-y + y (§ 31, 6) is a whole number. In order that =——= Y shall be zero

ora whole number, y =2, or 7, or 12, or 17, etc. Substituting these values of
y in the original equation, we find fory =2, x =11; for y =7, x =8 for
y=12, x =— 5. The last value of = is regarded 4s inadmissible here, as
would be other values of z obtained from subsequent values of y. Hence,
bx =565,8y =16, and 5z = 15, 8 y = 56 are the values sought.

CHECK. Draw the graph of the equation and find pairs of integral coﬁrdx-
nates on it. (See § 121.)

2. Separate 97 into two parts, one of which is divisible by 7
and the other by 9.

3. A woman paid $106 for silk at $2.50 a yard, and velvet at
$3.50 a yard. How many yards of each did she buy ?

4. A person bought 40 animals, consisting of pigs, geese, and
chickens, for $40. The pigs cost $5 apiece, the geese $1, and
the chickens 25¢ each. Find the number of each bought.

SuecesTiON. In this problem we get two equations and have three un-
knowns. After eliminating one of the unknowns between the two given
equations, we proceed with the resulting equation as in Ex. 1.

5. A farmer buys oxen, sheep, and hens, The number bought
is 100, and the total cost, $100. If the oxen cost $ 35, the sheep
$3, and the hens 25¢ each, how many of each does he buy ?



CHAPTER III
INVOLUTION AND EVOLUTION
1. INVOLUTION

50. Involution is the operation of raising quantities to powers.

51. Law for Raising Quartities to Powers. Let it be required
to show that (#m)" = xm7, m and n being integers.
(amyr = (xxx --- to m factors) X (xxx .-« to m factors) x ..- ton
times.
= xxxx --- to mn times,
=xm’l.
Hence, to raise a quantity with any integral exponent to any integral
power, multiply the exponent of the quantity by the exponent of the
power for the exponent of the quantity in the result.

.52. Raising Monomials to Powers.
Type form: (xoyb)n = xtiayhn,
1. Square: 3m?*; —5a; —6a™; 3a%; —3a*
2. Cube: —6ay; 3abc; —2mly; ¢ a’bc; —3 am™d™
3. Simplify: (3ab)*; (Z2x32x5)% (Bx2a); (—2bc")®; (22x b)Y
(a™y?; (ambPer)®; (22X 3% x B)"; (42x 5" x 7).
4. Simplify: 3(2x)? (see § 13); 5(2 x 3 @)*(3 b)% (3 @)*(4 b)%
6(—3b2(—2¢)% 2(3 X 4)%2 x 5Y*; 2(2 a)*(2 b)™
53. Raising Binomials to Powers. Newton’s Theorem. By a
theorem, or by actual multiplication, show that: '
(@a—bi=a*—2ab + b~
(@a—bP=a*—-3a’h+3ab?— b
(a—b)y=a*—4a°b+6a’h*—4ab’+ b
(@a— by =a®>—5a*h + 10 a®h* — 10 a*b* + 5 ab* — b".
52
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Examining the right members of these equations, we see;

(1) That the signs are alternately + and —.

(2) That the exponent of @ in the first term in each case is the
same as the exponent of (a — b) in the left member, and that the
exponents of a decrease by 1 from term to term ; also that b appears
Jirst in each case in the second term, and its exponents increase by 1
from term to term.

(3) That the first coefficient in the right member in each case is.1
(understood), and the second coefficient i3 the same as the exponent of
(a — b) in the left member ; ulso that each succeeding coefficient can
be obtained by multiplying the coefficient of the preceding term by the
exponent of the leading letter a, and dividing the product by the
exponent of the other letter increased by 1.

1. Raise (@ —b) to the 8th power.
SorurION, (a—b)% =a® —8a’™ + 28 a®b? — 56 adh8 + 70 atdt
— 56 a3b® 4 28 a2b® — 8 ab” - bB.
2. (a—0)" 3. (m+n) 4. (H—-K)".
5. Raise 2 a*—3b to the fifth power.

SoruTiOoN. (% — ¥)b = 25 — Baty + 10232 — 10 223 4 5yt — 5.
Then, (2 a?—38b)5 = (2a?)5 — 5(2 a?)*(3b) + 10(2 a?)3(3 b)?
— 10(2a2)3(8b)% + 5(2a2)(8b)* — (3D)5

(See § 18, 1.) = 82 a10—240 b 4 720 a%b2—1080a+b3 + 810 a2b*

— 243 18,
6. Bmi—bn)l. 7. (2mid—1)". 8. (4mr—}pdt
9. (10—1). 10. (14}P=14+1P 11 (12}

In cases of raising a sum or difference of two quantities of
which one is small as compared with the other, Newton’s theorem
furnishes a quickly and easily obtained approximate result, since
after the first or second terms, the numerical values of the suc-
ceeding terms diminish rapidly and some or all of the latter
terms can be neglected. Thus,

(1224)’=122 + 3 x 122 x +3 x 122 % 3 1.1 o

=1222(122 + 1) + 41 nearly, or 1,830,773,
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12. (100 — ) 13. (18}) 14. (279"
15. (53)°=(6—%)" 16. (1}})° 17. 9994

54. Raising Polynomials to Powers. This is accomplished by
changing the given polynomial into a binomial by the use of
parenthesis, and applying Newton’s theorem.

1. Cube2a+3b—c.

SorutioN. (2a+8b—c)*=[(2a+8d) —c]®

=(2a+3b)2-32a +3b)2.c+3(2a +38b)c2—ct.

The solution is continued by expanding each term of this result, then mul-
tiplying and combining terms when this can be done.

2. (m?— 3 mn +4n%?> 3. (@™ 4a~—2c%>

4. Indicate the expansion of (2z —3y + 42— 5n)* without ex-
panding the several terms.

II. EVOLUTION

55. Evolution is the process of extracting roots, that is, of
finding equal factors of quantities.

56. Law for Extracting Roots.
Let it be required to show that ¥/ = .
We have, zr¢ = (zr)?. (By § 61.)
Then, {/(z#)? = ar. (Since the gth root of the gth power of a quan-

tity equals that quantity, by the definitions
of power and root, § 8.)

Hence, to extract a root of a quantity, divide the exponent of the
quantity by the index (§ 8) of the root for the emponent of the
quantity in the answer.

57. Extraction of the Roots of Monomials.
Type form: Va6 = a™b".

Even roots of positive quantities can have for sign either 4 or
— and are marked i+ (see § 18, 9). Even roots of negative
quantities cannot be real quantities. Thus, V' —42? is not 2z,
since (2 z)*= + 44*; neither is it — 2 , since (— 2 ) also equals
+42% and not —4 2% Even roots of negative quantities have
been called imaginaries.



EVOLUTION 55

1. V36aZ 2. v/ —64a%" 3. V324"
4. Vapmeem, 5. VBEX3Fx6. 6. V22X X"
v 4/16«1‘_ 8 loxﬁ_”‘ 9 5x3x2

* N8l B8 ) P T ONQEx pB x 3

58. Square Root of Polynomials.

Let it be required to derive a process for the extraction of
the square root of a polynomial from a study of the formula
a®+2ab+ b*= (a+ by’

SoLurioN. @2+ 2ab+ b2 |a+d
a®
2aFb[2ab+ 07
: 2ab + b2
How is a, the first term of the root, found ? How is 2 a, the trial divisor,
found from the first term of the root? How is b, the second term of the

root, found ? In what two places is b written when found ? How is the
operation concluded ?

1. Extract square root of 4 a*— 1228+ 52+ 62 4-1.
SoLuTiON, 42t —~1228 4+ 6523 4+ 6x 4+ 1| 222 ~8x— 1 Ans.
4 x4
402 -8z [ — 1228+ ba?
— 1223 4 922

(423 —62)—1|—-422+62+1
—422 46241

REMARK. After two terms of the root are found, to find the next trial
divisor, the two terms are regarded as one quantity or as a monomm.l and
are doubled, giving 4 22 — 6 .

2. 8lat— 432 * + 864 2° — 768 2 + 256.
. 1——2z+2z’—-z3+—z‘£.

4. Extract fourth root, i.e. square root twice, of a*4 8a® 4
24 a?b® 4- 32 ab® + 16 b

5. Make a rule for the extraction of the square root of alge-
braical quantities, mentioning first the matter of arrangement of
terms before beginning.

COLLINS'S ADV. ALG, —b
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6. #4252 +1024 — 42 —202° +16 — 24,

7. Ve(@e+ D) +2)x+3)+1="?

Solve the two following mentally by getting the first and last
terms, and then the middle one. Test the answer carefully, pay-
ing special attention to the sign of the last term.

8. V-2 4+32—-2z+4+1=7?
9. V94 -122' + 16— 82+ 4="7?

59. Extraction of the Square Root of Arithmetical Numbers.

1. Extract the square root of 1156.

SoruTion. Since 1156 lies between 900 and 1600, its square root lies be-
tween 30 and 40, i.e. between 8 tens and 4 tens.

In general counting from the unit’s order, each pair of figures, or ¢ period,”
in the number gives one figure in the root, except that the left-hand period
may have only one figure. Thus, the square root of 149 is 12+. The
periods are usually marked by little lines above and between the figures.

For guidance in the solution the following formula is used :

C+up=+2tut+ut=034+(2t+ wu.
Notice in the last expression that 2 ¢ is the ¢rial divisor, and 2 ¢ + u is the
complete divisor. The process at the right below is just like that at the left.
That at the left was explained in the last article.

t+u
24+ 2tu+ul|t+u 11/56 | 30 + 4
[ i ft= 900
2t +u|2tu + u? Trial divisor =2¢=60|2 66
. ‘2tu+u’ u= 4

. Complete divisor —_—2t+u=64|256
2. Extract the square root of 43,347.24 and prove answer.

SoLuTtioN. 4/83/47/.24 | 208.2 -
4

408 | 3347
l 3264
4162 | 83 24
‘ 83 24 (208.2)2 = 43847.24 by actual multiplication.

ExpLaNaTiON. In the solution to Ex. 1, the ciphers were retained to
make the process clear. In this solution no cipher is written that is not
easential to the solution.
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When the first figure of the root is doubled for trial divisor it is under-
stood to be 40, though no zero is written after 4 at first. Now 40 is not con-
tained in the period 83 brought down, 8o 0 is written in the root and after
4, and a new period, 47, is brought down. Next, 40 is understood to be 40
tens or 400. This 400 is contained in 3347 eight times. When the decimal
period is brought down, the decimal point is inserted in the root.

8. 14,356,521. 4. 33,790,969. 5. 16,803.9369.

Solve the following, getting three decimal places in th;a root,
and prove answers by squaring the root and adding in remainder
thus getting given number.

6. 2.5. 7. 8. .008. 9. .1
a. Every sequence of figures has two square roots due to the position of
the decimal point. Thus V25 =5; v/ 2.5 = 1.6-. This shows importance of
pointing off number into periods correctly, conmencing at decimnal point.
Notice V.6 must be written V.50 to get results correct. It is important to
check the square root of decimals by wmultiplication, especially when first be-
ginning the subject.

10. Make a rule for extracting square root of arithmetical num-
bers, explaining carefully exceptional cases.

1. 2. 12. .056. 13. 4. 14. .00003.
Solve following mentally, getting one decimal place in root:
15. 2. 18. 3. 17. 5. 18. 209.

*60. Extraction of Cube Root of Algebraic Quantities. To derive
a process for the extraction of the cube root of polynomials from
the formula:
(@ +b)® =a® +8a% + 3ab% + b8 = a® + (3a% + 8ab + b)b.
SoLuTIiON
a®+3a%+8abd+bPlath
a8
8a2 + 8ab + b2|3a%b 4+ 3ad? 4 b8
|8 a%h + 3ab? + b8
How is. first term of root found ? How is trial divisor 8 a? found from
first term of root? How is second term of root found ? What two terms

#This subject is often omitted. It is not required for college entrance.
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are added (annexed) to the trial divisor to make complete divisor ? Explain
precisely how they are obtained. How is process completed? Is it im-
portant that the terms be arranged before beginning ?

1. 82|+ 66a*—632°+ 332> — 9z +1—362%

SovruTION
828 — 3625 4 6624 — 632 + 3322 —92 + 1222 - 82+ 1
828
1224 — 18@:‘+9:n:2 86 %5 + 66 x4 — 63 28
— 3628 4 542t — 2728
1224 — 3623 + 27 22 © 1224 —362% + 8822 — 9z + 1
622 — 92
+1
1224 —8628 + 38322 — 92 4+ 1/1224—3698 48322 — Qx4+ 1
ExpLANATION. 1st trial divisor = 3(222)2.
2d trial divisor = 3(2 z2 — 8 2)3.
8(223 —82) x 1 =623 —9x.
12=1.
—24 2241922 — 512,

2 —32°y + 62y — Tay + 6% — Say’ + o~

8 af 4 48 ca® + 60 c*x* — 80 ¢*x® — 90 ¢z + 108 Pz — 27 b
Make a rule for finding the cube root of algebraical quantities.
3924 — 994 — 9o + 8 + 64 — 144 & + 156 2.

Find the first three terms of the cube root of 1 —z. Prove
by cubmg root (§ 54) and adding remainder.

A I O

* 61. Extraction of the Cube Root of Arithmetically Expressed
Numbers.

1. Extract cube root of 405,224,

SovLurioN. Since 405,224 lies between 343,000, which is the cube of 70,
and 512,000, which is the cube of 80, the cube root of 405,224 lies between
7 tens and 8 tens. In general, counting from unit’s order, each set of three
figures or ‘‘period ' in the number gives one figure in the root, except that
the left-hand period may have three or two figures or only one figure. Thus,
the cube root of 1728 is 12.

*This subject is often omitted. It is not required for college entrance.
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SOLUTION WITH EXPLANATION REGULAR FORM OF SOLUTION
t+u
406224 | 70 + 4 406224 | 74
t8 = 343 000 843

812 = 14700 | 62 224 8 x 702 = 14700 | 62 224
8tu= 840 8xT0x4= 840
w= 16 ' £2= 16

15656 | 62 224 16656 | 62 224

2. Extract the cube root of 232435.510 to éne decimal place
and prove answer.

SoLuTioN. 282'435.'610 | 61.4
216

NET EXPLANATION
10800 | 16 485
180 8¢2 =3 x 60% = 10800,
1 8tu =38 x 60 x 1 =180,
10981 | 10 981 w=12=1,
1116300 | 5454.510 812 =8 x 610% = 1116300,
7820 8tu =38 x 610 x 4 ="17320,
16 ul=42=16.
1123636 | 4494.544 )
959.966 Cneck. (61.4)% + 969.966 = 232435.510.

The answer to the nearest tenth is 61.5, since the next figure of the root
after 4 would be more than 5.

3. 12,167. 4. 12,812.904. 6. 167.284151.
In the following get 2 places in the root and verify :
6. 3. 7. 0.2. 8. zig.

9. Write out a rule for cube root, including peculiarities.

In following get answer to nearest tenth mentally :
10. 10. 11. .37. 12. 150.

62. Symmetry in Algebra. A quantity is symmetrical if the
letters in it can change places without changing its value.
Thus, a*+ 40+ 6 a?b®+4 ab® 4 b* is symmetrical, as is the
sum of a and b raised to any integral power, since a and b can
interchange without altering the value of the expression.

« . 2
Similarly, 28+ %, & + oy + 37, &0

2ah" ete., are all symmetrical.




CHAPTER 1V

FRACTIONAL EXPONENT QUANTITIES AND RADICALS.*

1. FRACTIONAL EXPONENT EXPRESSIONS
63. Formulas Giving the Laws for Integral Exponents.
1. Addition and subtraction formulas:
axr+bx"=(a+b)ax"; ax™—bx"=(a—b)axm. (§18)
2. Multiplication formula: »™ X x"= xmt". (§ 17.)

3. Division formula: x™ -+ x* = x™*; XK' =x*" (§17)
4. Power formulas: (x™)"=ax""; (xyz)"=x"ymz". (§ 51.)
5. Root formulas: Vam=un; Vary?=axnym. (§ 56.)

64. Meaning of Fractional Exponents. Integral exponents were
defined in § 7. We are now to determine a meaning for frac-
tional exponents. Such definition will naturally have to agree
_with the definition and formulas for integral exponents, since in-
tegral exponents are merely special cases of fractional exponents
having the denominator 1.

If we let the laws of § 61 and § 17 hold true for fractional ex-
ponents, we have:
(wi)’= f—o; dxal=atti=ni=a
Thus, o is the square root of x, since it is one of two equal fac-
tors whose product is . (See § 8.)
Again, (a:*)’: =z ; A xatxat=attiti=g=y

* Throughout this chapter many problems can be solved mentally and should
be 80 solved.
60
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Thus, 23 is the cube root of , since it is one of three equal fac-
tors whose product is .

In general, (x*)"=x" =x™;

= 2 = 24242 o terms i

XX XX X* X s to n factors = x* * =Xx" = X"

Thus, x™ is the nth root of x™, since it is one of n equal factors
whose product is x™

We are therefore led to attach the following meaning to a frac-
tional exponent:

The numerator of a fractional exponent denotes the power to which
the quantity of which it is the exponent is to be raised, and the
denominator denotes the root to be taken of this result.

The student will see this more clearly from the following ex-
amples; Vat=al=a'; VF=2t=2% VEE=0%=0"; then
vV = a*, and a¥ means the cube root of the 7th power of a. '

65. Exercise dealing with Quantities having Fractional Ex-
ponents.

1. Calculate 81,

SoLuTION. 82 =64; V6d=4. Ans. Or, ¥8=2; 29 =4, Ans,
Evidently it is easier to extract the root firse.

Avorner Socurion. 8% = (28)§_= 22 =4.  Ans.
Here tha number is first expressed as the power of a prime.

a. To extract the root of a fraction extract the root of each term,
1 1

£_2 a\» gq»
Thus, \/E‘ﬁ' (5) =2
be

2. Calewlate: 4%; 16%; 278, 4}, of, (b}, (=Y Y
1 1
(au)-; (m’!)q.
3. Caleulate: 81%; 16%; 49t; (36)1; (DF.
4. (9m*—30 min +25n%) k=2

5. (@*—6a%+12at* -8t =2
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8. Express with fractional exponents Vat (Ans. w3), v,
Vs Vgt Vi,

7. Express with radical signs: z%; of; p}; 323,
8. Calculate 243%; 36%; 9; 81,

66. Principles underlying Operations with Quantities containing
Fractional Exponents. '
We know that (abc)? = a?’?; (abc)® = a®h®c®; ete. The question
arises, is it likewise true that

(abo)t = alvlch; (abo)t = aloled; ete. ?
Or, stated generally, is it true that

1 111
(¢)) (abc .- *=amb"c" ..o ?
Now we can test the truth of this equation by raising both
sides to the nth “power by the power axiom (§ 36). We have
1

[(abc «++ )*]*=abc :--. (By the definitions of
» root and power.)
111 1 1 1
and (a-bncn ces )n= (au)n(bn.)n(cn)n ve
=abc ---. (By the. definitions of
root and power.)

Thus, we see that raising the two members of equation (1) to
the same power glves equals. This, however, does not prove that

(abe - )"— a"b"c" -, since in algebra unequals raised to the
same power may give equals. For example, (— 2)*= + 4, and
(4+2)*= +4; but this does not prove that — 2 equals + 2, for
they are not equal.

. If, however, we limit the roots considered to arithmetical values,
that is, to positive numbers, then it is always true that if two
numbers raised to the same power give equals, they are equal.

Hence, with the limitation in meaning stated, we have
1 111

A (abe -+ )* =arbne™ .-
Changing this formula into a principle, we obta.’m:
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1. Fundamental Principle. The arithmetical root of a product is
equal to the product of the same arithmetical roots of the several
Jactors, and conversely.

By means of this principle any factor within a sign denoting a
root may be removed outside the sign provided the desired root
of the factor can be extracted.

For example, 128 = (4 x 3)} =41 x 3t = 2(3)‘}.

"By means of this principle also like roots of quantities can be
multiplied together. Thus, 6% x 5% = 303,

2. If both terms of a fractional exponent are multiplied by the
same number, the value of the quantity is not changed.

This principle holds, likewise, ohly for arithmetical roots.

For, while 9t =9, 9% may equal either +9 or —9, since the
square root (denoted by the denominator 2 of the exponent) may
be either positive or negative.

3. A quantity with a fractional exponent may have its value cal-
culated either by raising to the power first and extracting the root
afterwards, or vice versa. See Ex. 1, § 65.

This principle also holds true only for arithmetical roots.

Thus, 25% = (625)} = + 25, while (25%)2 = (+ 5)* =+ 25 only.

*87. Proofs based on principles of § 66 to show that same laws
govern the use of fractional exponents as governed integral ones.

1. Proof that in multiplication the exponents of like factors are
added.

» 2 _
Let 2* and 2 be any two quantities with fractional exponents,
z being any quantity, and m, n, p, ¢ being integral numbers.

= 4 e 4

Then, o X af =™ X @™ . (§ 66, 2.)
= (™)™ x ()™ (5 66, 3.)
= (2 x oy (5 66, 1.)

1 +
— (wﬂnp)w —xmwnp (§ 17, § 66, 3.)
# This article may be omitted, if desired. A special case was assumed in § 64
to get the meaning of a fractional exponent.
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But ™4+ ig the sum of the exponents — and 2.
ny , n q

Hence the rule to add the exponents of the same letter in the fac-
tors for the exponent of this letter in the product holds for fractional
as well as for integral exponents.

2. Derive the corresponding rule for division.

8. Proof that in raising a quantity to a power the exponent, of the
quantity 18 multiplied by the index of the power for the exponent of
the quantity in the result.

Let a*be the given quantity and g be the exponent, a being any

quantity and m, », p, ¢ being integral numbers.

n 2 11
Then - (@*)*=((@")" 1)y (By § 66, 8.)

i (Since the gth root of the
=[@™]" " ,th root means the ngth
root by the definition of
root, § 8, the ngth root
being one of ¢ equal
factors of one of the n

equal factors of a™.)

=[(@"y]* (By § 66,3.)

1

= (a™)~  (Since the pth power of
the mth power is the
mpth power, § 51.)

mp
=a™. (By § 66, 8.)
But %E is the product of the exponent of the quantity and
the exponent of the power.

Hence the rule to multiply the exponent of the quantity by the ex-
ponent of the power holds for fractional as well as integral exponents.
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68. Exercise in performing Operations involving Quantities having
Fractional Exponents.

Work mentally the first ten and as many more as possible.
1. Simplify 3af x — 5 al. Ans. —15all.

2.9 aib x3atsl. 3. 3miatxe m*n}p. 4. atdlet xabacl.
5. a; X aE X a;. 6. 12 a:*y*z*-.s -2 wiyi. 7. 6 x:+—2 z:‘g.
ReMark. - Notice that just as (ab)? = a2b3, so here

@abyr =38 x (alye.

9. 9abl; 8aht 10. (ah}; (—4ady?; (—27ab)t

1. (@t —ot 24t +3) (ot -2).

12. @=y)+ @t —yh); @t +at+1)(at-1).

18. =6yt +59h). (521, 1V)

14. (@ +oby; (@t —boby; @Gmb—2aty

16. From the sum of 5ax?— (z+ y)é +(a— b)* and —7 aa?
+2(z+3)} —3(a—b)} take 3 azt + 4(z + )} — 5(a— b)}

16. Calculate 361% 4 432 _ 10005 — 810,

17. Find the product of ( ”\i (1;’)*, and (h%;—")*'

18. Divide ot + a:iy; +t by x* + a:iy} + yg.

19. (e} + b4 =2 (as’z + b%) + (a;+ b;)

20. V1 +4at—2ot 4o 4250t 240t +1627) =2

21, Factoraf—1; a>+ab+22. (§23, VL)

22. (x§—9x+33m§—63:t§+66x§—36:v*+ 8)i=?

23. Expand (e — 4)(z? +5).

24. Expand (w§ +4 y‘)(z* 4 y*)

26. Expand (a:’3 2y )3

26. Expand (t—244-3 zi)’.

8. (3ahy.

.
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69. Meaning of Zero and Negative Exponents.

1. Zero exponents arise naturally in division when a letter
has the same exponent in both divisor and dividend.

Thus, grrar=2 =g (§17)

But "+ axm=1. .

Hence, if the rule for subtracting exponents is to continue to
hold, we must take #"=1. (§ 17,2.) We have then this.impor-
tant result:

2. Theorem concerning 0 Exponent. Any finite quantity with ex-
ponent 0 i3 equal to 1.

The meaning of this theorem is understood better if we think
of 2? as being associated with other factors.

For example, Q-‘flz Gy _6yz,

2uw uv uv

The exponent 0 shows that x is used no times as a factor of
the product, or has dropped out and so does not affect the prod-
uct of the other factors. 2° cannot have the value 0, for that
would make the whole expression 0, and it is not 0.

3. The meaning to attach to negative exponents can be ob-

tained fromn that for zero exponent. We have
X =™ =a=1.  (As just shown).
Orz"x z™=1. (Things equal to same thing
are equal to each other.)

Then o™= :—; (Division Axiom).

Thus, we are ied to take a quantity with a negative exponent to
mean the reciprocal of the same quantity with a positive exponent.

Ifbt= l%’ and c'3=-lc-3, as just laid down,
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Here we see b~2 in the numerator of the first fraction become
b? in the denominator of the last, and ¢® in the denominator of
the first fraction become ¢® in the numerator of the last. In this
way we get the following theorem :

4. Theorem concerning Negative Exponents. Any factor can be
transferred from the numerator to the denominator or from the de-
nominator to the numerator of a fraction promded the sign of its
exponent is changed.

70. Exercise in Using Zero and Negative Exponents.
Write the values of the following :

1. 100 2. 1000 3. a%e. 4. ‘éz”j'_;f .
Express the following with positive exponents:
5. 2a7%. 6. mn~% 7. balct. 8. 10a7 %k,
‘Write the following fractions without denominators:
2 1 a*m! 5
9. —. 100 ——=- 11. . 12. .
8 a~%® 25t 3144t

(@) When no denominator is written, 1, of course, is understood. When
all the factors of a numerator are transferred to the denominator (as in Ex.
6), the factor 1 is understood to remain in the numerator.

71. Rules giving the Laws for Exponents whether Integral, Frac-
tional, or Negative.
1. In addition, add the coefficients of similar quantities. The ex-
" ponents in the literal part remain unchanged.

2. In multiplication, add the exponents of the same quantity in
the factors for the exponent of this quantity in the product.

3. In division, subtract the exponent of a factor in the divisor
(denominator) from the egponent of the same factor in the dividend
(numerator) for the exponent of this quantity in the quotient.

4. In raising to powers, multiply the exponent of a factor quantity
by the index of the power to which it s to be raised for the exponent
of this quantity in the answer,
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5. In extracting roots, divide the exponent of a factor quantity by
the index of the root for the exponent of this quantity in the answer.

6. Any finite quantity with exponent 0 is equal to 1. )

7. Any factor of the numerator or denominator of a fraction can
be transferred to the other term of the division by changing the sign
of its exponent.

72. General Exercise in the Simplification of Quantities involving
Fractional and Negative Exponents. Answers are to have only
positive exponents. ‘Solve as many as possible mentally.

In solving numerical exercises write quantities as powers of prime factors,
and then, after simplifying, change all negative exponents to positive ones.

Thus, gt oy toga= 53 = %
1. 16, 2. 814 3. 100°L
4. 625°%, 5. o8 x #74, 6. mtxml
7. (ai)*. 8. 167, 9. axal
10. (a‘b‘i)’f. 11. 10074, 12. 4at + 2473,
18. (a7t 14. (gt 15 aixatxatl
16. (@9t 17. @y +ay. 18 (ad —af)n
19. (a—b)+ (a‘} - b*). 20. (a:g +2zb 4+ 1)%
21. (asbibya : (“f’; i )5. 22. ( f)-* ﬁ——”:;lq
2. (@a Y. 24. 87342567},
25. _mT—n’ X m~4, 26. Square at + b — o

m~? — n'm~!
21. 12044 — 91y (—6a) 4 27d
28. @i+2at4a0t48)@t-2).
The table at the top of the next page will be found convenient

for reference in simplifying and evaluating radical quantities,
and evaluating the roots of quadratic equations. (See also p. ix.)
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TABLE OF POWERS AND SQUARE ROOTS

x| 22 | 2 | 2 | 25 | o8 2t x| o} x| 4

1 1 1 1 1 1] 1.000 10 | 8.162 19 | 4.869
2| 4 8 16 32 64 | 1.414 11 | 3.817 || 20 | 4.472
3 9| 27 81 | 243 | 720 | 1.732 || 12 | 83.464 || 21 | 4.583
4|16 | 64 | 256 | 1024 | 4096 | 2.000 || 18 | 3.606 || 22 | 4.690
6|2 | 1256 | 625 | 8126 2.236 14 | 8.742 || 23 | 4.796
6 | 86 | 216 | 1206 | 7776 2.449 || 15 | 83.873 || 24 | 4.899
7| 49 | 343 | 2401 2.646 || 16 | 4.000 || 25 [ 5.000
8 [ 64 | 6512 | 4098 2.828 17 | 4.123 || 26 | 5.099
9 | 81 | 729 | 6561 3.000 || 18 | 4.248 || 27 | 5.196

II. RADICAL EXPRESSIONS '

73. Radical Quantities. An indicated root of a quantity is
called a radical quantity, or a radical. Thus, V5, 2} are radical
quantities. In 4\8/_71, or4(b a) 4 is the coeflicient of the radical,
3 is the index of the root, and 5 a is the radicand.

Radical quantities may be either rational, as /25 25 V4, or
irrational, as /7. A rational quantity is the ratio of two integral
numbers. An irrational (or surd) quantity cannot be the ratio of
two integral numbers.

Rational quantities, as 4, %, P, give rise, when the numerator
is divided by the denominator, to either integers, finite decimals,
or repeating decimals, that is, to decimals that repeat certain sets
of figures. Thus, f =.135135135...; §=.428571'428571 ...
When dividing by 7, after ciphers begin to be annexed to the
dividend, the possible remainders are 1, 2, 3, 4, 5,6. When such
remainders are all exhausted, the figures of the quotient must
repeat in the same order.

Irrational quantities, on the other hand, never give rise to deci-
mals like the preceding classes, but to decimals which do not end
and which do not repeat the figures in regular order. An irra-
tional number and unity have no common divisor, that is, are
incommensurable.
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In particular, it can be shown by the continued division process
of finding the greatest common divisor that the diagonal of a
square and its side, whose ratio equals v2:1,
are incommensurable. By the process of § 59,
V3 1 Wwe have V2 =1.4142+

The student can get a fairly good idea of the
different kinds of numbers, — positive, negative,

1 integral, rational, and irrational from the follow-
ing diagram, on which the length /2, from 0 to the point indi-
cated by the arrow, is found from the length 1 on this scale by
obtaining it as the diagonal of a square whose side is 1. .
The diagram shows mnegative numbers as extending | f
downwards from 0, and positive numbers upwards from 3
0; it shows also the integral numbers 1 and 2. The,K [*21

decimal division numbers also are examples of rationals, _f:fg
and V2 is an example of an irrational number. .18

To see the difference between rational and irrational - +L7
numbers, we observe that V/2 gives rise to a never end- p +18
ing series of decimal figures. As indicated on the dia- -v-_. :;‘ :
gram, we thus learn, first, that v/2 lies betweer 1 and 2 2 1.
next that it lies between 1.4 and 1.5. Now, if we sub- - +1.2

divided the line from 1.4 to 1.5 into ten equal divisions, _'_:i‘l

/2 would lie between 1.41 and 1.42; and if we sub- L .9

divided the line from 1.41 to 1.42 into ten equal di- - +8
visions, V2 would lie between 1.414 and 1.415; and if -*-;
we subdivided the line from 1.414 to 1.415 into ten :5
equal parts, it would lie between 1.4142 and 1.4143; L 4
and so on indefinitely. Thus, no matter into how '*::
many equal decimal divisions the line from 1.4 to 1.5 :1
is divided, V2 will always lie between two such di- L o
visions. It can be shown that the same .thing would - ~1
hold true if the line were divided into any other equal [ ";2

divisions than tenths. The distance from 0 to a point

on any one of the divisions described would be denoted by a
rational quantity. Thus, an irrational number always locates
a point different from one located by any rational number.

~
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74. The Duplicate Notation for Radicals. As we have seen,
both radical signs and fractional exponents are used to denote
roots. ‘

For example:

The reason for the existence' and use of both notations ‘is
easily explained. The radical sign / came into use a century
before Newton and Wallis found out that fractional exponents
were naturally adapted to denote roots. The use of the radical
sign in the meantime had become too firmly intrenched to admit
of its displacement. The radical sign notation, it may be re-
marked, is often shorter than the other. Thus, (a + b)} is more
troublesome to write than v/a 4 b, because both numerator and
denominator of the fractional exponent are not written in the
radical sign notation. -

The use of this double notation, however, is oftentimes quite
confusing to the student, and it makes the subject much more
difficult than it would otherwise be.

75. Simplification of Radical Quantities. There are four kinds
of reductions in radicals which we now proceed to investigate.

A radical is not in its simplest form:

1. If some required root of its radicand can be extracted.

Thus, (3629} =62; 161 = 2; (27 m*n®)} = (3ma?)}.

a. By § 8 we see that taking the square root of the cube root gives the

sixth root ; the square root of the square root gives the 4th root; the square
root of the fourth root gives the 8th root, etc. Thus,

o} = (assnhit = @nt; (mewnyd = [(mennybit = man)h.
1 1
Type form: (@)™ =a"
2. If any factor of the radicand can have the desired root taken
of it.
ast=09x2t=32%L (566, 1)
5(16 #)} =58 x 22%)t =10 2(2 )1,

COLLINS’8 ADV. ALG. —6
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If the required root of any factor of the radicand can be taken,
‘that factor may be removed from the radicand, and its root used as
a factor of the coefficient of the radical.

b. In searching for squars factors, test first for 4, then for 9, then for 25, etc.
Thus,  (262) = (4 x9x DI =0m}; w0t = (0 x 25 x 2t =152)%.

Testing for cube factors, look first for 8, then for 27, ete.

. 1 1
Type form: (a*b)" = a(b)™.
3. If the radicand i3 fractional.
To simplify, we multiply both terms of the radicand by a

factor such that we can extract the desired root of the resulting
denominator.

@ =@xpt 598 =K x1 =15t (566,1)

Z_.Z_D* 3(i:x§$) 3<z31¢ 10”3’) =;'—y(1°”y')*-

1
f H - == =1y,
Type form ( 6) b(ab’ )

To simplify a quantity whose radicand is fractional, multiply both
terms of the radicand by such a quantity as will make the denomina-
tor a perfect power of which the required root can be taken. Extract
this root and write the result as a factor of the denominator of the
coeflicient.  If possible, simplify the numerator as in 2 above.

4. If there is an trrational quantity in its denominator.
Simplifying such a quantity is called “rationalizing its denom-
inator.”

Thus, 1* (15} X f; z—*- (Since 6% x 6t =61+1=6.)
e _a b} "b*- (Since b¥ x b} =pi+i=0b)
ot ot b* b
: 4, 2=3_42=3h 5 g

2434 2+3i 2_3t 4-3
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Verify this last result by calculating 4 ] and the answer

243
4(2 —3}) each to three decimal places. Notice by this simpli-
fication a long division is saved.

To rationalize a quantity with a monomial denominator, multiply
both terms by a monomial which will make the denominator rational.

To rationalize a quantity with a binomial denominator, multiply
both terms by the “conjugate surd” to the denominator; that is, the
denominator with the sign between its terms changed.

Notice that multiplying by the conjugate surd always makes
the radical signs disappear. Why ?

76. Exercise in Simplifying Radical Quantities. All problems
given in the radical sign notation should be immediately changed
into the fractional exponent notation, then solved, and last of all
changed back. Before changing back into the radical sign notation,
separate quantities with fractional exponents into two fuctors, one
with integral exponents, and the other with proper fraction exponents.

Thus, 5 aibt = 5a% x aldt = 5aVab.
Solve as many as possible of the following mentally :
1. (25a%)L. 2. (27at*)L. 3. (108a%)1.
4. @yt 5. (1000). 6. (14ht
7. Vi 8. 7V3%z. 9. 5726,
. -
10. V3. 11. Vi 12. \"/%
_ a_ [ 3
13. 3Vig 14. 5\[;- 15. s
16. (“—Z’—z)*- 17. VaB£ad. 18, VaoE

19. V7294 20. V64 a*7. 21. V(a*-1)(1+a).
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3 1
22. V3. 23. . 24—
- 3t 4 5t V5 — V2

49 a3 [@* _a° w0 32

* V3o NGTE T Nawp

28. Find the numerical value of v/4a? when a=3.51, b=16.81.

a. Notice the result can be had very much more quickly by first simplifying
the radical. Check result by calculating radical in original form, noting the
difference in the labor of calculation.

29. Calculate VI?Fm when L=25.7, F=14, m=44.

30. Calculate area of triangle whose sides are 8, 10, and 14
(§ 16, 24), being given from a table (p. 69) that V6 = 2.449.

31. Calculate the diagonal of a rectangular box from one lower
corner to opposite upper corner if dimensions are 3, 4, 5 ft.
and if it is known from a table (p. 69) that V2 =1.414.

32. Find u from formula u= Vv + 2 f5 when v=3, f=31}§,
s=3.

33. Find one side of a square equal to the sum of two squares
whose sides are respectively 13 m. and 9 m,, using the table of
square roots.

34. Calculate V8 x 6° x 72, using table of square roots.

SuecestioN, First write: 88 = (28)8 =29; 68 =(2 x 8)8 =28 x 88;
72 =28 x 32

2 2 o8
35. Calculate [%ﬁ , using table.

77. Insertion of Coefficients under the Root Sign.

1. 5@ a)t
Sorvron. 6(3a)t =263 x Ba)t = (150)}. (566, 1)
2. 92 m)t. 3. 3z(5z)t.  Ans. (135 )L
4 2yTPHL 5. 32°VBay. 6 }Vi.
1
7, 98 \C—2 g 55y 9. a~¥2as.

a—x ake®



RADICAL EXPRESSIONS 75

78. Addition and Subtraction of Radicals. To add radical quan-
tities they are first simplified or reduced to similar radicals.

1. Add 18, 2(1)*, 564)}, and. 3.
- \2 8}_

SoruTION CHECKING
1ot (57s,2) - VI8 = 4.24+
2t =2l (§75,8.) 2V50 = 141+
5(8)34 =102}t (§75,1,2) 5VB = 14.14+
3 8
i Z(2)* (875, 4) —5= 106~
Sum = 14.75(2)} = 20.86-. 20.85+

a@. By this radical simplification, which is easily and quickly performed,
Jour root extractions and one long division are changed into one root extrac-
tion and one multiplication.

Change quantities written in the radical sign notation to the
other before solving. Check some of the solutions, assigning
values to the letters partly to test answers and partly for drill
in root extraction. Solve as many as possible mentally.

2. 8(125)t +2(80)k. 3. VA8ab'—bV/Ta.
4 2 +8VE. 5. 4VI28—5VI62+16VF.
6. 3VT5a%—2 a’b\/%g- 1. 3Y/189— 3875 — 786,
8. 3b3(a%)t—2 ab”(%%)*. 9. % + %— \%-
10. 23— VI2+ V9. 11. VI —2v16+ V32.
12. Vi+Vi+Vi 13. 2v3 4 V60— viE+ Vi

1
14. 3V +V40 +\/§—-\/—E' 16. Va%® + Vo' — ¥/ a%".
16. V2ar*—4ax+2a—V2ar®+4ar+2a
17. From (a —x)(a®— z’)"} take a(a— x)C:—"':)*-
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18. (54 a8} — (16 am-%)} + (2 a0yt 4 (2 Fam)}.
SueaesTiON. (54 a™+6}8) LI (27 a®® x 2 a™) i; etc.

19. The areas of three lots in the form of squares lying side
by side along a road are 6, 24, and 54 sq. rd., respectively. What
is their total frontage on the road ? Use table of square roots,
page 69.

20. The areas of three squares are 32, 8, and 18 acres respec-
tively. Find the number of rods of fence needed to inclose all of
them. '

21. One square lot has an area of 75 sq. rd. and another an
area of 12 sq. rd. How much more fence will one need than the
other ?

79. Multiplication and Division of Radicals Having a Common

Index. Use the fractional exponent notation in solving.
1 1

1
Type form : a"x b™= (ab)*. (See§ 66, 1.)
1. Multiply 4v15 by 3v/35.
Sorumion. 4(5x3) ¥ x8(sxT) =12(52x21)} =60(21) ¥ = 60V21. 4ns.

CHECK. 15.49+ x 17.76+=274.9+ = 275-.
2. 2(15)% x 35)%. 3. 8vI2 x 3V
4. 38a)t x (6 a®)}. 5. Va+2X Vz—2.
6. 4V124+ 2V3a. 7. 709 +7V18.
4 4 2

10. (6% + 3hy(6? + bb). 1. 9@ —neE)? +7).
12. (T+3VDHEVT="). 13. (2vV6—-V12—-3V24)x3V2.
14. (20 +3V2)(Ba—2Va). 15 (2V8—VI2—5V18)+3V2.
16. $VEX IV 17. 3V2 + &V

18. (m +n—Vmn)(Vm+ V). 19. (9V2—6V6 —3V8)+3V2.
20. (4V4—3V2)(2V6+V9). 21. (V2-3V3)
22. (5vV8+6VI2—2V20)(7TV2—-3V3+4V5).
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Rationalize the denominators of the following, evalnating the"
first two (see § 75, 4):

20t 15+14v3
23. 1 Py 24, =T~ YO,
5%+ 3 15—-23
g5, S—=3VI1Z 26 1 1
T 2vVE4+VIZ " Va+vh Va—Vb
SvegesTioN. Make a binomial out of
27 1 denominator and rationalize (§ 75, 4).
VIO -VvV2 -3 Then rationalize the new denominator in
a second operation.
28 V2—V3+ VB 20 VE+ a4+ VeE—ad ’
VZ+V3— B VEtd—Vi—a

30. Ift=21r\/§, and t’=21r\/g£ show that ¢:¢' = V1: V7.

In the following exercises the results are to be reduced to their
simplest form whenever they can be simplified.

81. Find the surface of a cube whose volume is 60; whose
volume is v.

32. Find the volume of a cube whose surface is 20; whose
surface is s.

33. Ratio of area of one square to a second is 4. Find ratio of
side of first to side of second. (N.B. The areas of similar figures
are proportional to the squares of the corresponding sides.)

34. One side of an equilateral triangle is 3. Calculate its alti-
tude, and then find ratio of one half of one side to the altitude.
Find same ratio when one side is . Why are ratios the same ?

35. Find the ratio of a side to the diagonal of a square. Let
side =a.

36. One leg of a right triangle is one half the hypotenuse R.
Find the other leg, and then the area.

87. The ratio of one leg of a right triangle to another is 2.
Find the ratio of each leg to the hypotenuse.
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88. The ratio of one leg of a right triangle to the hypotenuse
is . Fiud the ratio of the given leg to the other.

39. Find the area of an equilateral triangle one side of which
is 6.

40. Find a side and the area of a square whose diagonal is d.

41. If a regular decagon is inscribed in a circle whose radius is
R, one side of the decagon is R \/5 1 Find the ratio of the
radius to one side.

42. One leg of an isosceles triangle is 6, and the base is V5.
Find the altitude and area.

43. If an equilateral A is inscribed in a circle whose radius is
R, the perpendicular distance from the center to one side is { R.
F¥ind ratio of a side of the triangle to the radius.

80. Multiplication and Division of Radicals which do not have
a Common Index. To perform the multiplication, such quantities
must be reduced to a common index. Change quantities written
in radical sign notation to fractional exponent notation.

1. Multiply 18} by 6%.
SoLuTION.

B xet=xmix@xs)l=(2x3texsnt (568,23)
=(2x 3 x2x)=(28x 3t (566 1.)
=(38 x 26 x 8)4 =3(25 x 8)4 =3(96)}. Ans. (§75,2.)

2. V6 x V2. 3. 18% x 6, 4. V6d+2.

5. V2 x V3. 6. V10 x V2. 1. Vo + Var.

8. V6x v+ V8. 9 a¥zx by, 10. 16} x 2% x 328,

LYP R 1 P
11. 2V6+6V2. 12 \/%X\/%-!-\/g 13. VE x V8 x Vi

14. 2V3—V?2)(2—V6). 15. (VZ—V2)
16. Arrange in order of magnitude V', V3, V3.
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81. Powers and Roots of Radicals. Change quantities to frac-
tional exponent notation.

1 [3(ab)i]%. Ans. 27 ab(ab)l.

2. (9% 3. (3.3h 4. (Vazd).
5. VD) 6. VVa 7. VV/3Zx 10
8. (V3&: 9. (V)= 10. (V3—V2).

11. Simplify (‘/52‘ 3)’ + 3(#) +1

12. Simplify 2(7 = 17)’ - 7(7 = 17) +4.
13. Verify that =3 4+ /2 is a root of equation 2* —6 2+ 7=0.
14. Verify that 4(3 + 2V/6) are roots of 42* —12 z = 15.

15. Verify that :1—1—1%—— V21 4re roots of 5 P¥+1ly+5=0.

82. The Square Root of Binomial Surds.

We have, (V2 +V3)\=21+2V6+3=5+2V6.

To extract the square root of the last expression by the method
of § 58, the rational term, 5, must be separated into two parts
such that the product of their square roots is V6. This can
usually be done by inspection when the coefficients are small.

Extract the square root of the following by inspection:

1. 4 4+ 2/3.
SoLution. V842V8+1=v3+1.

2. 6—2v6. 8. 9-—-2V14. 4. 23-8/7.
5. 10 —~/96. 6. 11 472 7. 28 — 5V12.

When the coefficients are large, mathematicians have recourse
to a formula to solve these problems. Evidently the square root
of any binomial surd will have the form vz +Vy. It is clear,
also, that if the square of Vz+Vy gives the sum, a+Vb, the
square of Vz—/y will give the difference, a — Vb,
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8. Let a+ Vb or a— Vb denote any binomial surd, and
Vz 4y the square root of the first and V& —+Vy the square
root of the second.

Then, (1) Vz+Vy=Va+Vb.

@) Vz—Vy=Va—-Vb

whence, z—y=Va*—b (Mult. Ax., multiplying
: @) by (2)) .
and z+y=a (By squaring eq. (1) and

squaringeq.(2), adding,
and dividing through
by 2.)
~“2zx=a+Vaa—b (Add. Ax.)
2y=a—+Va*—b. (Sub. Ax)

whence V}:\/‘H— ”2“’_1’ (Div. and Sq. Root Axs.)
Vy= a;\%;lz (Div. and Sq. Root Axs.)

But Vat Vb=Vz*Vy. (By hypdthesis.)
. = a+Vai—b a—Val—b
< Va+Vb =V > + J 2 .
9. Extract the square root of 37 — 20V3, using the formula
just found. ’

SorutioN. 87 — 20V3 =87 — V1200. (§77)
Then, a =31, b=1200,

giving V3T — 1200 =\31+ \/3;2 —1300_ 37 \/3722 — 1200

=T +18_ /37 —13

- 2 2

=6—VIi2=56-—2V3.
Proor. (5 —2V3)2=25—20V38 +4 x 8 =87 —20V3.
10. 17 +/288. 11. 56 4+ 24/5. 12. 87-12Vv42.
13 47 —499. 14. 56 + 32/3. 15. 143V2.

16. 2 —2vVr—1. 17. 44— $V8. 18. x4+ 2y —2zVYy.
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. IMAGINARIES

83. Imaginary Quantities. We have seen that such an expres-

sion as vV —4 equals neither + 2 nor — 2, since the square of
each of these is + 4. The same thing is true of the square root
of any negative number. Because such roots are neither positive
nor negative ordinary numbers, they have been called imaginaries,
though this term is somewhat misleading.

A pure imaginary is an even root of a negative number, as
V=9, (—6)}, The sum of a real quantity and a pure imaginary,
as 2 + 5V — 1, is called a complex number.

The unit for ordinary positive numbers s 4 1; that for nega-
tive numbers is — 1; and that for pure imaginaries is v/ —1, or
(— 1) The v—1 unit is often denoted by the letter i.

1. By the definitions of root and power (§ 8), we have:
(V=1)p=-1, (Since vV —1 means a number which
or, ([—1)}y =—1. multiplied by itself gives — 1.)
(V=1 =(V=1)(V=-1)=—1V -],
(V=D=(V=-1Ip(V-1yp=-1x—-1=1.
Thus, (V—1 )*—-— 1; (V=1p=—vV—-1; (V-1 1)4
or, =1 3=—1; + 1

The student is advised to solve some of the follﬂvmg problems
as they stand, and then with ¢ substituted for v — 1, until he gets
accustomed to -associating the two notations. (See § 75.)

2. Add4+3V—1and7+4+5vV—1. dns 1148V—1
BG+2vV-D+@-5vV-1).
(=6—11vV=1)—(5 -3V —=1).
V=i4V=49-2v=9-3V—=25 Ans. —12V -1
V—=9d'+5vV—16a. (§191.) 7. 3vV—=25—V—=81.
3(—20) —(—80)} +-6(—45)}. 4ns. 20(— )L
6(—16)f —[—5—(—36)1]. 10. (—a*+2a0—B)}

® ® e ;s ow
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11. Multiply 6 +2+V—5 by 3— 4V —5.

SorutioN. In all multiplications, divisions, and raising to powers of
imaginary and complex numbers the safe plan is to replace V— 1 by i. The
reason is that following the ordinary rule for multiplication may mislead.

Thus, (\/_——i)’=v—lxv———_l=v+l=—lonly.

For, by definition of power and root (V—1)2=—1,

. To change 2V—5 into the i notation we write 2V5V—1=2Vbi.

Then, in the answer 18 V5 i is changed back to 18 V.— 5.

For the value of i2 see 1 of this article.

6+ 2VBi
8— 4Vbi
18+ 6Vhi
—24V6i—8(VB)2i?
18—18V6i—8xb5x—1=068—18V—5. Ans.

12. B+V=-3)(T+4V=3). 13 B+V-7)(2—-V—=6).
14. @+(=b)hH(—6—(—8)YH. 15 (6—2v—1

16. V=36xV—=25x b. 17. 3(—6)x2(—a)lx (-7}
18. (—3+V—9). 19. 6(—3)}+2(— 5.

Ans. 3(15)%.
20. 2vV—8+V—2. 21. 2(—32)} +2(—2)%
29. i*‘\/v_ (See§ 75,4) 2. %‘2%:_5-

24. Form the product of z+a, z—a, x+aV —1, and x—aVv—1.

25. Form the product of y —8,y—7,y+2+V—T7, and y+2
—V-T.

26. Verify that both s =—4 +vV -2 and #=—4 —V— 2 sat-
isfy the equation 2’ +8 2418 =0.

27. Verify thate=6a + 2aV —1 satisfy 2* —12 ax +40a*=0.

84. Theorems concerning Equations containing Irrationals and
Imaginaries.

1. One irrational quantity cannot equal the sum of a rational
quantity and another irrational quantity.
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Let v/m and v/n denote two different irrationals, m, », and a
being rational quantities, and suppose Vm =a + Vn.

Then, m=a*+2aVn+n, (Squaring Axiom.)
whence = —2aVan=a’+n—m, * (Sub. Ax))
or Vn= m_—zr_za—_af . (Div. Ax.)
m—mn—a

Thus, the irrational v/n equals the rational quantity 2a
which is contrary to § 73. Hence an irrational quantity cannot
equal the sum of a rational quantity and another irrational
quantity.

2. In any equation containing rationals and irrationals, the
rational part on one side equals the rational part on the other, and
the irrational part on one side equals the irrational part on the
other.

GIVEN a + VB =c+ Vd, in which V6 and V/d are irrationals.
To PROVE  a=¢, and Vb= Vd.
Proor.. Vb=c—a+Vd. " (Sub. Ax.)

But this equation cannot exist, by 1 above, so long as ¢—a is
different from 0. Thus, ¢ — & must equal 0, whence ¢=a, and
then Vb =+d. Q.E.D.

The above theorems hold true for real and imaginary quantities
as well as for rationals and irrationals.

85. Geometrical Interpretation of Imaginaries or Orthotomic
Numbers. Argand’s Diagram. If the word imaginary is used to
describe the quantities of the preceding article with the idea that
no real interpretation of them is possible, it is a misnomer.

It can be explained how — 1 is a multiplier or operator which
reverses the direction of the multiplicand. Now vV —1x v —1
= —1. Thus v —1 used as a factor twice accomplishes as much
as —1 used once. Accordingly it appears that vV — 1 can be
regarded as a multiplier which turns a multiplicand number
through an angle of 90°. Arbitrarily choosing as the positive
direction for angles that opposite to the motion of the hands of
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a clock, we get the accompanying Argand diagram, in which 1, 2,
3, etc., multiplied by vV —1 give V—1, 2v—1, 3V —1, ete.,
respectively; vV —1, 2V — 1, 3V —1, etc., multiplied by v —1
give —1, —2, —3,etc.; —1, — 2, —3, etc., multiplied by vV —1
1oy
+ov=T
+8v=1
+1v/T
+oyT
+5yTF——1
+HivT
+3v=T
+2v/T
+ VT
etc, =10,-0,—3, 7, =6, -5, - J,.—3. =3, =1, | *1, +3, +3, +1, +3,
- v
—24/=T
-3v/=T.
3 —4V/=T

‘ /A
-8y/=T
_1V:1'
—8yv=T
-ov/=T
=10/=T

etc,

give —vV—1, —2v/—1, —3V—1, ete.; and —V -1, =2V —1,
— 3v/—1, etc., multiplied by vV —1 give 1, 2, 3, etc., again. The
series written vertically containing v — 1 have been called ortho-
tomic numbers instead of imaginaries, because they cut a¢t right
angles the original algebraic series.

Any ordinary, orthotomic, or complex number (§ 83) repre-
sents some point in the plane of the first two. Thus, — 3 repre-
sents the point three units to the left of the origin; 3+/—1, the
point three units directly above the origin; 4 4+5+/— 1 represents
the point marked 1 on the diagram, whose abscissa is +4 and
ordinate + 5; — 4 — 4, the point marked 3, whose abscissa is —4

[

+

T35 TG 10, ete.
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and ordinate —4; and so for any number. Evidently the sign
conventions are the same as on the graph diagram.

We have seen complex numbers added, subtracted, multiplied,
divided, and raised to powers. These operations and their results
can all be given a meaning on the diagram.

86. Graphical Representation of Sums on Argand’s Diagram.
1. Represent graphically thesumof 2+4+3+V —1and 4 +Vv —1,
or2+3tand 441

SoruTioN. Point a (see diagram) is located by its coordinates (2, 8), and
b by its coordinates (4,1). Joining these points to the origin and completing
the parallelogram Oacb, we see that ¢, the vertex opposite O, has for its
coordinates (6, 4). Adding (2 +8¢) and (4 +¢) as in § 83, we get 6 + 41.
Thus,

The sum of two complex numbers is a point which s the vertex
opposite the origin of the parallelogram formed on the lines from the
origin to the points located by the two given complex numbers.

a. Evidently the addition of complex numbers bears a resemblance to the
addition of forces or velocities in physics.

Add the following complex numbers graphically, using graph
paper, and check the answer by an ordinary solution.
2. 34+56tand 54 27. : 3. 10427and 14 5¢%.
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4. 643¢tand 2—4.. 5. —2—-3iand 4 —1.
6. —6—-3iand 5—41. 7. —b—4iand —3—41.
8. 3464,5—Tiand —2—5i. .

Show in Ex. 8 that the sum is the same whether the third quantity is
added graphically to the sum of the first two, or whether the sum point is
constructed directly by adding all the real quantities for the abscissa of the
answer and all the imaginary quantities for the ordinate of the answer.

In the following add the short way:

9. 24117,045¢,and 4 —-T1. B

10. 24+47i—6—-11¢{—5—-12:—-2-934.

87. Graphical Representation of Differences on Argand’s Diagram.
Subtract graphically in the following problem :

1 (6+40—(2+39).

SoLution. Notice that the difference line is one side of a parallelogram
of which the minuend is the diagonal and the subtrahend the other side.

Construct first the minuend point 6 4 41{ and the line from the origin
to it, Oc. (See figure for addition, § 86.) Next, construct the subtrahend
point, 2 + 34, and the line to it, Oa. Join ¢ and ¢. Last of all draw from

" the origin a line Ob equal and parallel to ac. The point b is the remainder
sought.

The codrdinates of this point b can be found very quickly by subtracting
the real number in the subtrahend from that in the minuend for the abscissa
of the answer, and the coefficient of the imaginary in the subtrahend from
that in the minuend for the ordinate of the answer point. '

Subtract in the following, locating the minuend, subtrahend, and
remainder points, getting the codrdinates of the latter by simple
subtraction, as just described :

2. (T+4i)—(@4+7). 3. (—6—30)—(4—59).
4. (1049)—(2—6i). 5. (—5+108)—(—7+3%).
6. (3—6i)—(—2—b). 7. 3—60)—(0+74).

88. Absolute Value of a Complex Number. By the absolute value
or modulus of a complex number is meant the positive square root
of the sum of the squares of its coefficients. The absolute value
of a complex number is evidently the distance from the origin to the
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point located by it. Two notations are used to denote absolute
value or modulus. One uses “Mod,” and the other writes two
vertical lines one on each side of the number.

Thus, Mod (x + iy)=+ V22 + %,
and |z +iy|=+Va+ 4.

89. Conjugate Complex Numbers. Two cohplex numbers differ-
ing only in sign of second term, as z+ iy and x — iy are called
conjugates. Two conjugate numbers have the same absolute value.

IV. EQUATIONS CONTAINING RADICALS

90. Solution of Equations involving Radicals. The solution of
equations involving radicals differs from that of ordinary equa-
tions. The difference appears in the first part of the solution in
which the radicals are eliminated.

1. Solve 2zf= 64, and verify.

SoLUTION. ot =32 (Ax. ?)

x} =2. (Extracting the fifth root of equals.)
z=4. (Squaring equals, Power Axiom.)

VERIFICATION. 2(4)* =2x 82=64.

2. 3yl=24. 3. 2vVz=16. 4. 5y4=380.
5. at=1. 6. 22f=—_486. 1. 257 =
8. Solve Va*—1 —z=—1, and verify.

Sovumiow. (22 —Di=z_1. (Sub. Ax. The radical is put

alone on one side of equation.)
22— 1=22—22+4+1. (Squaring Ax.)
2z=2, (Ax. ?)
z=1 (Ax. ?)

VERIFICATION. V1-1—-1=-10r0-1=-1.

a. The plan is to get the radical containing the unknown quantity by it-
self on one side of the equation. Then, by squaring (or cubing, etc.) both
sides, we make the radical sign disappear. From this point the solution is
like those with which we are now familiar.

COLLINS’S ADV. ALG. —7
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9. VIb+#—2—2=0. 10. (az+2ab)—a=0.
11. Viee—6z2—6=22z+4. 12. 14+2Ve=T7T—Vx.
13. (m3~9m’)}+3=x. 14. 2Vz—2=2—8Vx.

16. V122—0—-V382—1=V2Tz—2.

SoLuTION * A
122 —-6—2V3622—2Tx+6+8x—1=27Tx— 2. (Power Ax. § 21, IL.)
V8822 —2Tx +5=—0x—2. (Sub. and Div. Axs.)
3622 — 272+ 6=38622+24x +4. (Squaring Ax.)

S =g
VERIFICATION. 9V — & —4V— 1 =6V - 3.

b. The plan in solving such equations is to place one radical quantity (pref-
erably the least simple, when there are two or more) by itself on one side of the
equation, and then to square, thus removing the root sign. Then the remain-
ing radical quantity, if any, is placed by itself on one side, and both members
are again squared. The most frequent error in such problems consists in fail-
ure to apply Theorems I and I insquaring. Notice that V122 — 65— v3z — 1

is a binomial, and must be squared as such.
16. Viz+5—Vz=Vz+3.
17. V2 +3+Voe+8—Viz+21=0.
18. Vz+Va—Vazr+a=a.
19. z+a=Va+a2Vb + 2%

20. Solve v =\/g for d; also for e.

21. Solve v = 332.4+/1 + 0.003665 ¢ for ¢.
22. Solve t:t' =V/1: VI for l; also for I'.

23. Solve s=\/;Z—\/4—q for q.

24. Solve t=\/2—i'———2—'v-t- for s; also for .
9
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V. FUNDAMENTAL PRINCIPLES IN ALGEBRA

91. Fundamental Principles in Algebra. Students are apt to
think that the principles of algebra are very numerous, and, as a
consequence, hard to remember. In truth, their number is com-
paratively small, and they are easy to learn. The student should
fix them all firmly in mind.

They may be listed as follows:

1. The laws of precedence of operations (§ 13).

2. The rule for addition based on the bookkeeper’s procedure
in adding debts and credits separately. The rule for subtraction
is based on that for addition (§ 18).

3. The law of signs in multiplication (§ 18, 4). The law of
signs in division follows from that for multiplication (§ 5).

The associative, commutative, and distributive laws (§ 2, § 4).
The laws for exponents in simple operations (§ 17).

L O

The nine theorems of multiplication and division (§ 21).

7. The fundamental principle in fractions (§ 29). All operations
in fractions except multiplication depend on this pringiple.

8. The solution of equations depends on the axioms, on simple
addition, and, in the case of literal equations, on factoring the
terms of the left member. (See § 38, 25.)

9. Power and root operations with polynomials depend on
Neuwton’s theorem and on the formulas in § 21, I, V.

10. In radicals there is only one fundamental principle (§ 66, 1).
See also §66,2,8. On § 66,1 depend simplification of radicals,
and multiplication of radicals having a common index. Nearly
all the other operations in radicals depend on the latter two.

a. After memorizing the foregoing, the student should test his knowledge
by reference to concrete exercises in various places. Thus, in the solution
on the opposite page we see’in turn: the power axiom used ; theorem IT, §21, °
applied : ((120—5)})2=122—5; Vi22—6x V32—1=V362—272+6;
algebraic additions performed ; etc. In §§ 18-20, 2-5-above are in evidence
throughout, and in § 83, 1, 6, 9 above are used ; and so in general.
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VI. COMMON ERRORS IN ALGEBRA

92. Such errors are due to the students’ breaking of some law
or convention. A list of the most common errors with an ex-
planation of why they are errors will, it is hoped, help the pupils
to guard against them.

I. Errors in Simple Operations

1. Probably the most common error consists in breaking the laws of
precedence of operations (§ 13). These laws were made arbitrarily, but are
recognized the world over, and the student must accept and memorize them.

2. To say that a (b + ¢) equals ab + ¢, or that 9—13%" equals b + ¢, is an
error, since it breaks the distributive law (§ 4, 5).

3. Tosay thata (b x c) equals ab x ac is an error since, by the associative
law, a (b x ¢) = abc. Similarly, (ab X ac) + a is not equal to be, but to abe. -

The errors in 2 and 3 are often due to the pupil's remembering one form
when he is dealing with the other. A good plan to convince a pupil that he
is in the wrong is to substitute figures for the letters. Thus, (8 x 6) + 2
equals 24, and not 12.

4. In long division and in the extraction of square and cube roots of poly-
nomials, errors are often caused by failure to keep all the quantities (including
remainders) arranged according to the descending (or ascending) powers of
the leading letter or letters.

II. Errors in Theorems and Factoring

5. The error of saying that (@ + b)2 equals a2 + b2 or that (a + b)3 equals
a3 + b8 is often made. Compare the true (expanded) values with the false
ones here given. The errors may arise from a failure to distinguish between
(a + b)2 and (ab)?, and between (a + )3, and (ab)3.

6. The commonest failing in factoring consists in not first taking mono-
mial factors out of given polynomial quantities. As a result, the student
finds himself unable to proceed to the correct solution.

7. A common mistake in factoring consists in trying to factor prime quan-
tities, such as a2 + 2, at + b4, a2 + ab + b?, etc. Such quantities should be
memorized as primes.

ITI. Errors in Fractions

8. A common mistake in fractions consists in canceling terms of a numer-
ator and a denominator instead of factors of each. To do this breaks the .
fundamental principle, § 29. .

Al
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Thus, it is not allowable to cancel the 32’s in : j'_ i:
the whole numerator and denominator but only parts of them have been
divided by the same number. The absurdity of such cancellation can best
be shown by using figures. Thus, if ;_; is written in the form ;gi }
careless student may, by absurd cancellation, get §, 3, or 0 as a result, accord-
ing to the manner of canceling and the interpretation of the resulting expres-
sion. Once the fundawental principle is given up, any fraction can be made
to have almost any value. -

9. A common efror in subtraction of fractions, due sometimes to ignorance
and sometimes to forgetfulness, consists in failing to change every sign of the
subtrahend numerator when subtracting it from the minuend numerator.

Thus, %— ¢ ; 4 does not become a—b-—'—i but equals 2= :"' d

A corresponding error is very often made in solving equations. The use
of parentheses about polynomial subtrahends is advisable as long as there is
danger of error.

10. In changing the sign of a polynomial numerator or denominator of a
fraction, students often fail to change the sign of every term. The best way
to change the sign of a quantity is to multiply it by — 1.

11. An error sometimes made in the reduction of an improper fraction to
a mixed number consists in failing to write + between a quotient and a
remainder over the divisor. In arithmetic the sign + is not needed, since
abeence of sign in arithmetic means addition. But in algebra absence of sign
means multiplication.

12. In the multiplication of a fraction by an integral quantity, as

and get :, since not

the

gx ¢, students sometimes thoughtlessly multiply both terms of g by the
whole number. By the fundamental principle in fractions this leaves % un-

altered instead of multiplied by ¢. In fractional operations such mistakes

are avoided by regularly writing 1 for the denominator of integral quan-
Thus, ¢ x &=9%¢.

tities. us, b LAV =3 ]

13. Students who have been studying equations, a subject in which denom-

inators are made to disappear by use of the multiplication axiom, often write

only the numerator of the answer in addition of fractions.

IV. . Errors in Equations

14. A common error in solving fractional equations is the failure to
multiply every term on both sides of the equation by the lowest common
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denominator. This error often occurs when the right member is an integral
quantity. Notice that both the multiplication axiom and the distributive law
are violated.

15. Failure to verify answers permits of the occurrence of mistakes and of
their repetition because they are not discovered.

16. Students sometimes fail to get and keep all the terms containing the
unknown on the left side of the equation. Since to solve an equation is to
get the value of the unknown expressed in known quantities only, no
answer that contains an unknown is a solution of the equation.

V. Errors in Powers, Roots, and Radicals

17. The commonest mistake in extracting the square and the cube root of
arithmetical numbers comes from not commencing at the decimal point to
point off the given number into periods of two or three figures each, and in
Jailing to fill out decimal periods at the right.

Thus, V.5 must be set down ./50/00 ; V3 must be set down .’300/000.

18. A common mistake of those who imitate and do not think is to say
that Va + Vb is the same as Va + b, after the analogy of Va x Vb = Vab.
That Va + Vb is not equal to Va + b may be shown by pointing out that
V4 + 9 =V13 = 8.6+, whereas V4 +V9 =5. This error is often made also
in the converse form. Thus, Va? + b2 is said to be equal to Va2 + Vb3, or
@ +b; or Va2 + b is said to be equal to a V.

19. It is easy to fall into error in the multiplication of imaginaries. Thus,
V=4 x V=0 appears to equal + v+ 36 or 6. But the negative root of
V86 must be taken, since 2V— 1 x 3 V— 1 =—86, because (V—1)2=—1.

20. In the solution of radical equations, when both members are squared
and one is a binomial, the error of II, b isoften repeated. Thus, it is said
that the square of Vi + 8+ Vb is equal to (x+8) + b6, instead of to
x+8+2V6(x+3)+5. See Theorem I, § 21.

VI. Errors in Quadratic Equations

. 21. The commonest error in quadratics consists in forgetting to write the
sign + before the right member when the square root of both members is
taken. From the theory of radicals negative roots were excluded, and in the
solution of concrete problems negative roots often have to be discarded ; but
in the solution of guadratic equations the student should be particular to
write the + sign, else he will get only one root.

22. In the solution of a quadratic by completing the square there are 8ix
or eight single steps and there is always danger of error in some of them.



CHAPTER V

QUADRATIC EQUATIONS*

93. A quadratic equation is one which, when reduced to integral
form, contains the second but no higher power of the unknown

quantity; or, a quadratic equation is an equation of the second
degree. (See § 35.)

94. Classification of Quadratics. Determinate { quadratic equa-
tions may be classified into two kinds: '

(1) Those which contain but one unknown quantity ;
(2) Simultaneous quadratics.

Quadratic equations containing but one unknown are either
complete or incomplete. A complete quadratic contains both the
second and first powers of the unknown: as, az®*+ bz +c=0.
An incomplete (sometimes called pure) quadratic contains only the
second power of the unknown: as, az® +¢=0.

In the earlier sections of this chapter we shall take up the more
common types of quadratics, and in the last section the more un-
usual and difficult ones.

I. INCOMPLETE QUADRATICS

95. Solution of Incomplete Quadratics. Incomplete quadratic
equations are solved in much the same way as simple equations.

z 8

1. Gi =z 2
iven Pt T

+ to find its root and verify.

_z
z+1

* The study of the chapter on logarithms, Chapter VIII, can be taken up here
if desired. 1t follows naturally the chapter on exponents, since logarithms are

exponents.
t For indeterminate equations, see § 49; also, under Diophantus, in § 115,
93
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SorurioN. 822 —3x + 322+ 8x=822—8. (Mult. Ax.)
622 —-822=—8. (Sub. Ax.)
—222=—8, (Simplifying left member.)

z2=4. (Ax. ?)
z=42. (Root Ax.)
2 , 2 8 _-2 , -2 _8
VERIFIOATION. §T}-i+2—l_3 —-2+l+—2—l—8'

a. Nothing is gained by writing + x = + 2, since this equation can give
only z=+2,orz=—2.

b. Notice that the degree of an equation given in the fractional form can-
not be told until after it is cleared of fractions. Some equations, apparently
like the one just solved, give rise, when cleared, to simple equations, others to
incomplete quadratics, others still to complete quadratics.

Solve and verify in the following:

2. 4x+5= r+42 3 z+2 2—2 26
Te—1 b5z—3 z2—2 x+2 22—4
5 _13__2 1+2_x425

4 4z 8z 3> 5. 1-2z z—-25

8. ar* +b="bx*+a. 7. @ —b+*=0.

8. V4r —1=6x—4~V4a%—1.
9. Solve 2a2+ 2 ¥ =4 m? + & for m.

Solve as many as possible of the following mentally, Exs. 10-13
for z, and 14-19 for the letter named :

10. 1322 —19=T2*+5. 11. Bz—-T)3Bz+7)=32
12. z’—3=‘&;1§- 13. ma®=a’®— na’.

14. a®=b"+ ¢ — 2¢p for b. 16. d=Va'+b* + ¢ fore.
16. A=x(R*—r® for r. 17. 3=1}gt* for t.

18. V=ur'a for r. 19. H= E’/R for E.

96. Problems involving the Solution of Incomplete Quadratics.

1. Find the area correct to one decimal place of a circle whose
area is 243 sq. in., from the formula a = #7*, using 3.1416 for =,
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2. Find correct to two decimal places one side of a square
whose diagonal is 72 m.

8. Find the altitude of an equilateral triangle one side of
which is 6 ft. :

4. Find the radius of a sphere whose sﬁrface is 600 sq. in., from
the formula s =4 =%

5. Find to two decimal places the radius of the base of a
cylinder whose volume is 231 cu. in. and whose altitude is 6 in.,
from the formula v = mar’.

6. Find to two decimal places the radius of the base of a cone
whose volume is 251 cu. cm. and whose altitude a is 22 c¢m., from
the formula v =} mar®.

7. The area of a sector of a circle is 25 sq. ft. and its angle at

the center is 20°. Find the radius from the formula a = 32 6(:; .

II. COMPLETE QUADRATICS

97. Solution of Complete Quadratic Equations. There are three
distinct methods of solving complete quadratics with which the
student is asked to familiarize himself, viz.: (1) By factoring;
(2) By completing the square; (3) By use of a formula.

Of these the factoring method is not practical when irrationals
appear in the roots; otherwise, it generally gives the quickest
and easiest solution. Review § 23, III.

98. Solution of Complete Quadratics by Factoring.

1. Solve and verify in the equation 2* — 13  =48.
SorLuTioN, % —132—48=0. (Ax.? Right member made 0.)
(x—16) (x +8)=0. (Factoring.)

.2 — 16 =0, whence z = 16 Ans. (Setting each factor equal to 0.)
z 4 8=0, whence x =— 8 Ans.
VERIFICATION. 162—18 x 16 =48; (—38)2—13(—38) = 48.

2. 2 —112=42. 3. 2~ 122+35=0.
4 #—152=0, 5. 28— 112 +12=0,
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8. 622 —2=15. 7. 42*4+T2+4+3=0.
8. %+350—12:c=0. 9. 9627 —d o415

10. 2*—(a+b)z + ab=0. 11. V4dv+ 1T =4 —Vv + 1.

12. Separate the number 266 into two factors whose difference
iss

13. Find three consecutive numbers whose sum is equal to the
product of the first two.

14. A man traveled 60 mi., and if he had traveled 3 mi. more
per hour, he would have required 1 hr. less to perform the
journey. At what rate did he travel ?

a. Algebra is a formal science, built up without reference to particular
problems. When it is used to solve problems which by their nature do
not admit of negative answers, such answers are discarded. Thus, —15 in
Ex. 14 is ignored. Only in problems which admit of negatives Aare negative
answers retained.

15. The perimeter of a field is 360 rd. and its area is 50 acres;
find its length and breadth.

16. A and B start at the same time from the same place.
After 24 hr., A, who covers 1 km. in 3 min. less time than B, has
traveled 2.5 km. more than B. How many minutes does each
need to travel a kilometer ?

99. Construction of Equations, their Roots being given. Converse
operation to that of preceding article.
1. Construct the equation whose roots are 4 and — 2.
Sovution. [z—4][z—(—2)]=[r—4][z+2]=22—22—8=0.
Hence 22 — 2 x — 8 =0 is the equation sought.
Proor. 2¢—2x—8=(x—4)(x+2)=0. (Factoring.)
Then, x — 4 =0, whence x =4 ; and z + 2 = 0, whence x =— 2.
Form the equations whose roots are as follows:
2.2,—-1. 3837 4 —2,6. 5. —3, —8. 6. aandbd.
7. V2 and —Vv2. 8 25and —70. 9. —20aand 30a.

10. Make a rule to construct an equation, being given its roots.
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11. Construet the equation whose roots are 2 + V: 3 and 2 — V3.

SoLuTtioN
[z— @+ V3)][z— (2 - V3)]=[z—2—V3][zf}2 + V3] =0,
or, 23—4z+1=0. Ans. (See§79

12. Construct the equation whose roots fare —3—+/7 and

-34+VT.

100. Solution of Quadratic Equations by pleting the Square.”
In order to solve an equation by this methpd, it is first reduced
to the form a%?® 4 bz =, if it is not aiready \n this form.

The second step consists in completing thy square in the left
member. We regard the two terms of the ejuation which con-
tain ® and = as corresponding to a’+42ab in a®*+2ab+ 0% The
problem is to find 4* from the other two terms and add it to them.

The third term is found from formula as follows:

2d term
2ab+2Va?) =P, or .
(2ab+2Vd) ’ [2 X square root of 1st term

Solve the following equations by completing the square, and
verify :
1. 328 —1024+8=0.
SoLuTION
823 —10x=—8. (Sub. Ax. Known term to right member.)
922 —80x=—24. (Mult. Ax. Coeficient of z2 made a positive

30z . perfect square.)

[5_\/??3 =25. (The second term is divided by twice the
square root of the first term, and the
quotient is squared.)

»~ 922 —80z+26=1. (Add. Ax. Result just found, 25, is added

to both members ; 256 — 24 = 1.)
s 8z—=b6=+1. (Root Ax. The square roots of equals are

equal.)
~8z=5+1=6,0or6—1=4. (Sub. Ax.)
. x=2,0r$ Ans. (Div. Ax.)

VERIFICATION. 8 x22—-10x248=0. 3($)2—10x$+8=0.

« 3

1
i
L B
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2. *—102—56=0. 8. #**—62=135.

"4, *— 28 2=060. 5. *—182—63=0.
8. ©*—042=23. 7. ©—0.04 x=1.254.
8 #*—112=—28

a. Fractions can always be avoided by first multiplying the. equation
through by four times the coefficient of x?, merely indicating the multiplica-
tions in the left member.

This is called the Hindu Rule for solving quadratics. Notice that the
quantity squared and added to complete the square by this rule is always
the coefficient of z in the given equation. It is not always necessary to
multiply by so large a multiplier, or, often, any multiplier at all, to avoid
fractions. Thus, this was not necessary in Exs. 2-7 above.

b. A simple rule which will solve any quadratic directs us first to divide
the equation through by the coefficient of x2. Then the quantity added to
complete the square is always the square of half the coefficient of z. Explain
why.

An objection to this rule is that it often gives rise to large fractions, and
gives the student no chance to exercise his judgment, before he begins, as to
what is the wisest thing to do, whether to multiply or divide through, and by
what quantity, so as to shorten most the subsequent calculations, and avoid
error. What is best to do in any given problem is learned from experience.

In the next four problems, following the Hindu Rule is the best that can
be done, if fractions are to be avoided. Solve them by the rules in @ and b,
and compare the solutions.

9. 222 4+32=2T. 10. 3 2*—132=—10.

11. 83 —-Tz=—2. 12. 223 -5ax=42.

13. T2*+22=32. 14. 82— 222 =21.

15. 84 x* 4+ 456=129 2. 16. 324+4=39zL

- a2 2422 _4_92—6
Yo=i- 18 =322

19 m+3_24_ o g0, 28—4t—3 _t—4t4+2

m—2 m 22 —-2t+3 £—-3t—2
21. Vbn+11=V3n+ 1+2. 22. V22+2V22+5=2V62+4.

For the verification in the following eight problems see § 81,
Ex. 13, and § 83, Ex. 27.

23. *—4x+2=0. 24. m*4+5m+5=0.
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25 (z—1)(z—2)=1 26. 82 —202=21.
27, 4 i=t. 28. o — 62410 =0.
z V3
1
9. —1=1 30. T(@+4+ T4+ B2+ _,
x+; z
31. *—2a2—3a*=0. 82. ¥ —4by—565b=0.
33. ar’ +bx+c=0.
SoLuTiON. 44a%23 + 4 abx =— 4 ac. (Hindu Rule, § 100, a.)
4a%23 +4abr+ b2 =2 —4ac. (Completing the square. )
2ax+ b=+ Vh—4ac (Sq. root Axiom:)
z;:b—i—i’;i— (Sub. and Div. Axs.)
VERIFICATION. !
3 4 .\2
a(—b+\/b‘—4ac) M( b+\/b‘ )_H_
2a
+ b2 — 2be‘ 4¢m+b2 4ac+—b2+b2\2b’ .o,
(263 — 2V — 4ac—4ac)+( 258+ 26Vh — 4ac) + 4ac = 0.
© 84, mx*—2nz4p=0. 85. 2*— (a+ b)z+ab=0.
36. 2+(n+1z+n=0. 37. ¥ —(4a+10)y+40a=0.
38. 9a'd'” —6a%%=0". - 39. (m—n)2¥ —nzx=m.

40. ba® —ax + a 4 cx* =b —ca.

SuecestioN. In all such problems the terms containing #? must be com-
bined into one term by factoring, and also the terms containing z, and the
known terms are to be transposed to the right member, 80 as to reduce the
equation to the form mxz? 4 nz = p.

41. 24 3bt=5ct+ 15bc. 42. *—3br=2ax—6ab.
4. 1 1 _ 1 44, ™ +m=ngy+2m2.
z4+a x+b a-—0> a—y m+n

45. Make a rule for the solution of quadratic equations by
completing the square covering all the different steps. Include
literal equations.

46. s+V1i—#=12 47. 2s—V1I-¢=.25.

1
48. t+;=24~. 49. 2¢+V1+E=17.
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In Ex. 50 solve for s and in Ex. 51 for ¢.
50. 234+ Vs —1=m. 51. ¢c+VI—d=p.

52. The diagonals of a rectangle are 2 2* +  and * + 132 — 35.
Find both values of # and the diagonals.

53. If a train had traveled 5 mi. an hour faster, it would have
needed one hour less to cover 150 mi. Find the rate of the train.

54. The perimeters of two similar polygons are expressed by
22+ 3« and 3z+5 and two corresponding sides by .03 and .05.
Find values of  first and then find the perimeters,

556. Two launches race over a course of 12 mi. The first
goes 7} mi. an hour. The other, having a start of 10 min., passes
over the first half of the course with a certain speed, but increases
its speed over the second half by 2 mi. per hour, winning the race
by 1 min. What is the speed of the second launch in the first
half of the course ?

" 101, Solution of Qusdratic Equations by Means of a Formula.
Solve the quadratic ax®+4 bz + ¢ = 0, regarding it as a type of all
quadratics, getting (§ 100, Ex. 33)

—bt V¥—4ac
=,

2a

To solve any particular quadratic, we reduce it to the form
ax’+ bz + ¢ =0, if not already in this form, and then substitute
the values of a, b, and ¢ from the given problem in the formula
just found.

The pupil should solve the equation ax? + bx + ¢ = 0 repeatedly,
until he becomes familiar with the process and remembers the
answer, and can solve the equation mentally, writing down the
answer formula.

1. Solve 32*— 7 2= 6 and verify.
SorurioN, Writing the given equation underneath the type form we have

ax?4+bx4+¢c=0,
822 =T —6=0.
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We see now that in this particular problem a = 3 L = - 7 6= - 6
Substituting these values for a, b, and ¢ in

—b+Vh—4dac 4ac

= 2a
—_(— — 3 3X —
we got p==(=D & VEDT—EXHCH),
or =7¢\/;9+7'2'=7%11=3'0r_§.

VERIFICATION. 8(8)2—Tx3=6. 3(—-§?-7x(—§)=6.

2. 922418z +48=1. 3 Tr420r+12=0.
4. 1222 —112+4+2=0. 5. 62 +1T2=3.
6. 2+ (n+1)z+n=0. 7. 08349z 4+12=422+=.
8. 12—51x=36+462% 9. 104+15T+T°=26T.
10. (m — n)x® — ne=m. 11. ¥—1=4ay—a’
4z r+3 =4 z r—2
. —_——=4, 18, —MMM=—+—

12 1 s 3@—1) 6
z,a_2 — —__ 2a
14. T4%-2, 15. —V2z=———-
4 a+ - vatz—V2z Vate

z
16. Find two consecutive numbers the sum of whose recipro-
cals is o%.
17. A rectangular park 56 rods long and 16 rods wide was
surrounded by a street of uniform width containing 4 acres.
What was the width of the street?

18. The perimeter of a field is a rods and it contains b acres.
- What are its dimensions ?

19. A merchant sold a coat for $11, and gained a number of
per cent equal to the number of dollars the coat cost him. What
was his per cent of gain?

20. A boatman rowed 8 miles up a stream and back in 3 hours.
If the velocity of the current was 2 miles an hour, what was his
rate of rowing in still water ?
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QUADRATICS

102. Higher Equations solved as Quadratics. By higher equations
are meant equations of a degree higher than the second. (See
§ 93.)

1. Solve #4— 5z’=—4

SovLuTioN. 4zt — 2022 =—16. (Hindu Rule.)

42t —20224+26=09.

(Completing Square, Ax. ?)

228 —5=43. (Ax.?)
22=4,o0rl (Ax.?)
=4+2o0r 4+ 1. (Ax.?)
VERIFICATION. (4 2)*—5(4 2)3=— (£ 1D)t=5(+1)3=~4.
2. #*—132+4 36 =0. 3. #*—182'432=0.
4, 2 —422=45. 5. 9ut+b5ul=4.
6. H—247=81 7. Ty*+y*=350.
8. ##—-T72=8. '
SueGEsTION. Solve first for z® by completing the square, and then for

z, getting two values for z.

9. ¥+ 37y =1728. 10. m*— 19 m?= 216,
1_17. e1 1_
1. 2 =T 12. TS =1
1 2,
. 16( 2* 4+ = )=257. . .
131(-0-‘”,) 7 14a:’4-,-me_8 21
212
16. &+ L ot 00 16. (2+2)'+198=29 ('+2).

103. Construction of Higher Equations.

In § 98 we saw how to solve quadratics by the factoring
method, and in § 99 how to construct an equation when its roots

are given.
in a similar manner.

Equations of higher degree are solved and constructed

1. Construct the equation whose roots are 3, 4, and — 5.

SoLUTION.

[2—3][z—4)[z —(—6)]=a8— 223 —

232z +60=0. Ans.
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Form the equations whose roots are as follows: ‘

2.21 -3 3 1,24. 4 —5,40. 5. —6, —T7,1.
6. 1,232 17 1,4, 4,2 8 abec 9. a, —b,¢c, —d.

10. Make a rule to construct an equation of any degree when
its roots are given. _

1. 1, —-1,2, —2,3. 12. 4,4, -1 0.

13. 2+V3,1,—3. 14. 1, —3,3+Vv—1.

15. 2+vV—=2,1+V—1. 16. +V3,2+V—-3,0.

104. Number of Roots in an Equation. The preceding article
makes it clear that the number of roots in an equation equals
the degree of the equation, but some of the roots are very often
imaginary. :

105. Solution of Equations of Higher Degrees by Factoring.  Re-
verse operation. Before beginning this article the pupil should
review §§ 23, 24, and 98.

1. Solve z*=a?® and verify.
SoruTioN. 28 — @ =(zx—a) (22 +ax+a?)=0. (§23.)

z—a=0,z=a. Ans } (Setting each factor equal
23 + azx + a2 =0, t00.)
422+ 4ax=-4a? (Hindu rule.)
423+ 4axr+ al=—3a2 (Completing square, Ax, ?)
2z 4+a=4+aVvV-—3. (Ax.?)
z==0dav=3 V=3 4Ans. (Ax.?)
VERIFICATION. a8 = a8; (:H—;‘/———g )a =ab

The solution shows that there are three cube roots of a2 instead of one.

Find all the roots of the following by factoring method, set-
ting each prime factor equal to zero, and solving prime factors of
the second degree equal to zero by the method of § 100:

2. 2*=8. 3. ©4+64=0. 4 =a'
5. #*—1=0. 6. 216 +1252°=0. 7. 2*—64=0.

COLLINS’S ADV, ALG. —8
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8 62°4+17224+122=0. 9. B4+22+24+1=0.
10. @442’ —42—-16=0. 11. 2* -2 4+322x=162>
12. 2*—132°+40=0. 13. #+3*+3y+1=20.
14. 2*—16=0. 15. 2*—192—30=0.(§ 23, VIL.)
16. ?—T2z+6=0. 17. 1228 —282*+172—3=0.
18. 224 -3 —42*+32x+2=0.
19. 42 —12424+92—-1=0.
20. 6244252452 —60x—36=0.

ScecEstion. Factor as in § 28, VI, and treat V2
as if it were a rational quantity, solving by § 100.
22. 2*+64=0. 23. 44 +81=0. 24. 4 +625=0.

From § 103 it is clear that if we have any means of knowing
any of the roots of an equation, we can remove these roots from
the equation by dividing its left member (right member having
been made 0) by the.binomial differences between x and such
roots.

26. ®*+42°+62—11=0.

Sorurion. If this equation has a rational root it is either 1 or 11. Sub-
stituting z = 1 in the equation we see it is satisfied. Hence x — 1 is a factor
of the left member by the divisibility theorem, § 23, VIL '

Dividing 28 + 422+ 6x — 11 byz — 1 we get 23 + 5z + 11.

Thus, 22 4 62411 =0 is the equation containing the remaining roots.
Solve this equation.

26. '+ 22 —2=230. 27. o -6+ 27T 2 =10.

21. 24 at=0.

IV. SIMULTANEQUS QUADRATICS

106. Simultaneous Quadratics. Degree of Simultaneous Equations.
The degree of an integral equation is the greatest exponent, or sum
of exponents, of the unknown or unknowns in any one term.

Notice that zy =5 is a quadratic, as well as 2?4 3y*=16. We
may think of &% 2y, y* as denoting areas, while z and y terms
denote lengths only.
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107. Classes of Simultaneous Quadratics. The variety of prob-
lems and solutions in simultaneous quadratics is large. 'We shall
next study examples of three or four of the most common cases
in simultaneous quadratic equations, and then in the last section
of this chapter examples of the more difficult kinds of problems.

108. Simultaneous Equations, one of which is Quadratic and the
other Simple, can always be solved by substitution method (§ 42).
Q) 32+ 2y —y=48,

. Gi . to find dy.
1 leen{(z) 97—y +3=0. nd z and y
SoruTION. (21) 22=y—3; (22 z:%é’. (Axs, ?)
W 3(312;3)’+ 247 —y =48, (5 42.)
ilz;%}!"'__m_,.gya_y:m.
8y3—18y +27 +8y2 — 4y =102, (Ax. ?)
1137 —22y— 165 =0. (Ax. ?)
—2y—16=0. (Ax. ?)
-6 +3)=0. (§98.)
sy=5. Ans., Or y=—38 Ans.
(2,)3:6;3=1. Ans. (2)z___32_§=.-3. Ans,
VEriFicaTION. (1) 8x124+2x 53— 65=48.
3(—8)2+2(—38)3—- (—3)=48.
9 {3:’-{-2_1/’:34, s {x+4y=23,
S le4y=" " a4 3y =054
s 3z —y=11, {3z(y+1) 12,
’ {.5w=_y==47 3z=2y
e P4y + 9y =343 2m?— 3 mn 4+ n? =14,
) {Za;—y=21. {2m—-—n_
1 2
2u—3v=11, utg==2E2
8 4 3__ 10, . u+'v 4u—v
u v 7 .
10 {aw+by=p, 1n {s—utHryt’, w and ¢
" et dPf=gq. " lv=u+gt. unknowns.
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109. Simultaneous Quadratic Equations solved by Squaring, Adding
or Subtracting, and Extracting the Square Root. —This method is
applicable only for certain combinations of the given coefficients.

(1) 928 +4y* =394,

1. Given {(2) 35— 2y=2, to find % and y.
SoLuTiON
1) 923 +4y2 =304
(21) 922 —12zy +4y2= 4 (Ax. ?)
3) 122y = 390 (Ax. ?)
(1) 922 +4y2 =304
4) 922 +12zy +4y2 =784 (Ax. ?)
4) 8z +2y =128 (Ax. ?)
@ 8z -2y = 2
6z = 30,or —26 (Ax. ?)
x =6, 0or — 32, Ans. (Ax. ?)
4y =26, or — 30. (Ax. ?)
y  =6},or—17} Ans (Ax. ?)

VERIFICATION. (1) 9(5)3+4(6.6)3=38%, or (2) 9(—A1)3+4(— }2)2=304.
a. The general plan of this method is to calculate the value of the sum,
or difference, or both of two quantities by processes like that just given.
Thus, in the preceding problem we had given the value of 3z — 2y, and we
proceeded to calculate the value of 3z + 2y. From these two it was easy to
calculate x and y themselves. In Ex. 2, calculate the value of x — y.

{a:’+y’=178, . {m’+y’=89, . {zy=518,
z+y=16. xy = 40. x4 y=>51.
z4+y=9, 224y="T, 2z+by=19,
{x’+xy+y’=61. {4m’+y’=25. {4a:’+25y’=241.
o+ y* = 243, SuccestioN. Begin by dividing Eq. (1)
{m+y=9. by (2), getting (8). Then use (3) and (2).
0. {z‘—y'=152, 10. {z’.+y3=37,
z—y=2. o —axy+y*=3T.
- {x‘+x’y’+y‘=21. 1. {z’+wy=77,
Pdtay+y’="T y+y=4.
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13 92 — 132y 4+ 99y =101, 14 (4 ay+2=T,

" | 3ay=12. -y 4+ £ =19.
15 w4 2uww442=21, 1 ?—3zy4+y=—1,

" lu—2v=09. " 82—y +3y2=13.
7 36 2° 4 64 * = 85, 3m—2n=11,

’ 6z+8y=11. Im? 44 n?=241.

V. DIFFICULT QUADRATICS

110. Solutions of More Difficult Quadratics. The variety of
forms taken by quadratic equations, or equations quadratic in
character, especially simultaneous quadratics, is large. To be-
come expert in the solution of such equations requires consider-
able experience. The practical value of such skill is not very
great, since there is little call in the applications of mathematics
for the solution of such equations. If the student desires to pre-
pare himself as quickly as possible for solving such problems,
his best plan is to try to get a grasp of the various ¢ypes of prob-
lems, methods of solutions, and special devices that are ccmmonly
met with in textbooks. For these reasons, in what follows, solu-
tions and suggestions are offered freely, but the number of exer-
cises given is small.

111. Solutions of Quadratics containing one Unknown Quantity.
Classes of Problems.

1. Equations quadratic in character containing fractional expo-
nents.

1. Solveat +4at= 21, and verify.

SoLuriox. Notice that z3 =(x* )3. Thus, this equation is a complete
quadratic since it contains a certain unknown in one term, and the square of
this unknown in another term, besides a term not containing the unknown.

(In this problem the unknown is a simple expression. Later in this section
we shall see a function of the unknown in one term and the square of this
function in another term giving a quadratic.)

If we put x*:z, then :i:* =22, Making these substitutions, the given
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equation becomes 22 + 4 z = 21. Thus, we see that this equation can easily
be solved by any of the methods of solving a quadratic.
Solving the equation by factoring (§ 98), we get

@+t -9)=0.
wat=—7andat= 38  (Ax?)
.. 2 =2401, and z =81, (Ax.?)

Verirroarror.  (2401)1 4 42001yt £21; 81yt 4 4eyt=21
Thus, z = 2401 is not a root of this equation if positive square roots are
taken, while 81 is a root.

2. x+4at=5. 8. st —bat=—6. 4 F—24st=81

5. TVZ+Vz=350. 6. 1245 —at=1. 7 az®*4brr=c

8 ot — 62t =1 9. ot —dz="5al. SuccestioN. Divide
through by 1.

II. Equations solved first for functions of the unknown.

1. Solve #*=9 4 V2% — 3, and verify.

Sorurion. In such problems the radical quantity is taken as the un-
known at first. By adding to both members just the right quantity the equa-
tion can be put in the quadratic form. Thus, we can write here

28 —8— VZT—8=6. (Sub. Ax.)

To see more clearly that this is quadratic in character, put Vz?—3=z.
Then 22 — 3 = 23, and the equation becomes 22 — z = 6.

Then (z2—3)(24+2) =0. (Factoring.)
‘Whence z=3,and z=—2.
Now, we have Vs —3=38,0r—2,

whence ] 22 =12, or 7,

and 2=2V8, or V7. Ans.

Veririoamion. (2v3)2=9+ V(2V3)2—38; (VI)y1£9+ \/(—\/T)n_—s
Thus, we see the root v/7 does not verify in the original equa.
tion with the sign of the radical taken positive.
2. P2 —6=2Va?+9. 3. #*=V2'—T+413.
42T+ Ve — Tz +18=24. 5. ?—a— Vo —x+4=8.
6. 2Vr—3z+ 11 =2*—-3x+8. 7. V&*—8z+31l 4 (z—4)*=5.
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8. 4+ —4+x+1=0.

SoLuTiON., 22+ —4 +i+ ;l: =0, (Div. Ax.)
o, (#4g)+(e4])-1=0 (Arranging.)

1 1 i
Th B 4+24 2 2\ _-6=0, (Adding 2 in one term and
en ( +a+ z*) + (z + z) ! subtracting it in another

to make first quantity a
Nowputz=z+ i Then, we have perfect square)fl y
2242—6=0,
Whence z=+42o0r—38.

Wenowhave:c-f—i:z, and x+i=—3.

Solving these equations gives the four values of 2 sought.

. 16"”+1=28 10. (x+§)’+x=42—§.
¥ o -
1 1 2 ~
11. @a— 4)g=§+ @z— o SuceesTION. Put 2= (2 — 4)3,
ey 2 _2 241 da—1)_21
12—t L=2 13. == .z’+11 2
+1

SueeesTION to Ex. 13. Putz=
x po—

14 2*-22—22"4+32—108=0.

Sorurion. To find a function that can be used we extract the square root
of the left member (§ 58). This gives 22 — z for the root, and — 322+ 3z
— 108 for the remainder. Hence the given equation can be written

($2—2)2 —8(22— z) — 108 =0,
‘which equation can now be solved for x? — z first, and then for z.

16. #—62°+52"+122—60=0. 16. _4z‘+g=4w’+1.

ITI. Tartaglia’s solution of the cubic by means of a quadratic
equation. '
1. Given 2*—62—9=0, to find .
Sorution. (y+ 2)8—6(y +2)—9 =0. (v + z put for z.)
P+224+38yz(y+2)—6(y+2)—9=0. (y+ zcubed and arranged.) .
@ +2®) + (Byz—6)(y+ 2) — 9 =0. (Factoring middle terms.)
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Since there are now two unknowns, and there was only one, z, at first,
we may choose a relation between y and z expressed in an equation. Now,
we see if we put 8 yz — 6 = 0, we greatly simplify the last equation, all of the
terms except y3 + 2% — 9 dropping out. Then we have

(1) 8yz—6=0, or z=§, and (2) *+23—9=0,

Substituting z = 2in (2), this equation gives (using factoring method),
y*=8,0rl, whenceyy =2,o0rl.

Then, z=1l,or2,andz=y+2=3. Ans.

The equation containing the other two roots can be found by dividing
28 — 6z — 9 by z — 3 and setting the quotient equal to 0. (§ 105, 25).

2. @*—18x — 35 =0. 3. #—102424=0.

a. A curious fact about Tartaglia’s solution is that it gives a usable re-
sult only when one of the roots of the given equation is real and the other
two are imaginary. When all the roots are real, resort may be had to the
divisibility theorem (§ 23) to find the first of the three roots.

112. Solution of Harder Simultaneous Quadratics. Besides the
two most common cases, or kinds of problems, in simultaneous
quadratics described in §§ 108, 109, a number of others are also
usually given. ' The number of devices used in solving these equa-
tions one time and another is very large.

I. When each equation is of the form ax®+ by =c.
1 (1) 92°+254°=225; (2) 2+ =9.
2. (1) 42°—92°=36; (2) o*+2* =15}

II. When all the terms containing unknowns in both equations are
of the second degree, often called the homogeneous case.
1) 42 —2y— = —16,
@) 3ay+y°=28.
SoruTion. To solve these equations we follow the very nm;sua.l course of
eliminating the known terms. The process may seem a little more natural if

we insert 22 as the literal part in the right members and then eliminate 23,
Notice this would make gll the terms in the equations homnogeneous.
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) 2828 — Tay—Tyt=—11222 (Eq. (1)xT7.)

(21) 122y + 42 = 11222 (Eq. (2)x 4.)
3) 2823+ bay—8y*= 0 (Ax.?)
(4z—y)(Tz+3y)=0. (Factoring.)
Then, 4x—y=0, whencey=4z;
and, 7z+4+8y=0, whencey=—j§z.
Now, (@) 8z(42) + (4x)2 =28, (Putting 4 z for y.)

.~.z=:|;l,} (Since 28 22 = 28.)
and 4 y=4x +1=44 |Ans. (Since y=4z.)

Also, () 8z(—§x) +(— )2 =28. (Putting y =— Jz.)

=4+ V—-18= :|:3V—2,} (Since —14z? = 28.)

and y=—3}x £8V—2=FT7V—2 |Ans. (Sincey=—jz.)

a. Inthe verification notice the upper signs go together and the lower signs
together. Thus, z = + 8V — 2 goes With y =— TV — 2.

" 38 —4ay+4+ 2y =17, P4ay+2yP =44,

" lyp—a*=16. 20 —ay+y*=16.

III. When each equation contains only one second degree power
or product (as 2¥ 3%, or xy) which 1s the same in all of the equations.
To solve such problems eliminate the second degree term and
then proceed as in § 108,

1
L |2y +e=380, 2 R
* y!+3a;_4y=.26. ) y__1=1.
v T a

IV. When the two equations are symmetrical (§ 62) in x and y.

1. la,"+y‘=17, SuccestioN. Put {x: uto
z4+y=3. y=u—ov.
=82, [:v‘+y‘=33,

2. 3.
r—y=2. z+y=3.

V. Solution first for function of the two unknowns, followed
later by solution for the unknowns.

1 {(1) #?+4y—15(x+2y)+80=0.

’ (2) a:y=6.
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SoruTioN. (1,) 23 +42-16(x+2%)+80=0
(21) 4=y —24=0
3B (=+2y)2 —16(x+2y)+66=0 (Ax.?)
‘We now solve for the function,  + 2y, using factoring method.
() [x+2y—T)[z+2y—-8]=0,
4) z+2y="T,and (§) x+2y =8.

The solution is continued by combining (4) and (2), from which values
of z and y are found. Then, in the same way, (5) and (2) are combined
and other values of z and y found.

{m’+y’+w+y=18, o+ 2xy+y+32="T3,

2. 3.

2y =6. (Y +3y+r=4.

o [9FHV-B3a42y=—86, (24 +4VIFP=45,
" ey =4 ’ i_xy=12.

VI. Equations containing three unknowns.

1. &4+ yP=a; 2+2'=b; y*+2=c.

o' +y* +2° =30, SuacEsTiON. Add 2 times (2) to (1) and
2 jxy+yz+22=17, extract square root of result, getting (4).

z—y—2z=2. Then combine (4) and (8).

o+ y+2 =84, SueeEsTION. Add 22y = 16 to (1), and
3. {z4+y+2=14, substitute z = 14 — (x + y) in the resulting

oy =8. equation. Then solve first for z + y.

The Qeneral Case. Since all the problems so far undertaken have been
solved, the student may get the impression that any problem in simultaneous
quadratics can be solved. To show that this is not the case, we undertake
to solve what appears to be a simple problem, much simpler than many we
have had.

Given (1) 22+ y=a, (2) z + 2 =0, to find z and y.

From (2), z=b—y%
Then (1) b-y)2+y=a,
or B-2bt+yt+y=a.

But this equation of the 4th degree cannot be solved generally.
See American Mathematical Monthly, Vol. X, p. 192, and Vol. VI, p. 18.
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VI. THEOREMS OF GEOMETRY

113. Theorems from Geometry. For convenience of reference we
give here a list of the theorems of geometry which will be used in
the remaining parts of the book. If a review of geometry is desired,
the pupil should be asked to prepare anew the geometrical proofs
of these propositions before he uses them in the solution of
algebraical problems. If a review of geometry is not desired, the
geometrical exercises themselves, of course, may be omitted.

1. The angles opposite the equal sides of an isosceles triangle
are equal, and, conversely, tn any triangle,
B the sides opposite two equal angles are equal.

Thus, if AB= BC, then angle ' = angle
/\ A,and if angle C' = angle 4, then4B= BC.
c 2. An equilateral triangle is equiangu-

lar, and conversely.

A

3. Iftwo straightlinesintersect, the vertical angles formed are equal.

4. If two parallel lines are cut by a transversal, alternate interior

angles are equal, and corresponding angles are equal, and conversely.

Thus, if 4B is parallel to CD, B
L1=L2LA=L5,L3=L2 ete. /

5. The opposite sides and angles of A. 8/3 B

a parallelogram are equal, and the Yo
diagonals bisect each other.
"6. The sum of the interior angles of @ o D

a triangle equals two right angles.

7. The sum of the interior angles r

of an ngon (n-sided polygon) equals 2n —4 right angles.

8. A radius perpendicular to a chord bisects it and also the sub-
tended arc, and conversely.

9. Pardallel chords intercept equal arcs on the circumference.

10. An inscribed angle, or an angle formed by a tangent and
a chord, i3 measured by one half of the intercepted arc.
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11. An angle formed by two chords intersecting within a circle 1s
measured by one half of the sum of the intercepted arcs, and one
Jormed by two secants meeting without a circle, or a secant and a
tangent, or two tangents, is measured by one half of the difference of
the intercepted arcs.

Fia. 1 Fie. 2 Fig. 3

Thus, Z1 (fig. 1) is measured by 4(AC+ BD). Angle 4
(fig. 2) is measured by } (BC— DE). Angle A (fig. 3) is meas-
ured by 3 (BC — BD).

12. If a line is drawn parallel to the base of u triangle, it divides
the other two sides into segments which are proportional to each other
and to the whole sides, and conversely.

Thus, if » is parallel to m,

a_c, a_b, a+d_c+d,
=2 2 =

b d ¢ d b d
a+b=c+d
a [

13. The bisector of an angle of a triangle, whether interior or ex-
terior, divides the opposite side into segments which are proportional
to the other two sides.

Thus, if ABC is a triangle and CD and CD' are the bisectors
of the interior and exterior angle C, we have

AD_AC AD'_AC
DB CB’ DB OB
14. Two triangles are similar (that is, their corresponding angles
are equal and their corresponding sides are proportional) :

.

(2) If they are mutually equiangular, or
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(2) If an angle of one i3 equal to an angle of the other and the
sides about these angles are proportional, or

(8) If their corresponding sides are proportional.

15. Two right triangles are similar if they have merely one acute
angle of one triangle equal to an acute angle of the other.

16. If a perpendicular is dropped from the vertex of the right
angle on the hypotenuse of a right-angled triangle : (I) the per-
pendicular i3 a mean proportional between the segments of the

B hypotenuse; (2) each leg is @ mean pro-
portional between the whole hypotenuse
and its adjacent segment. Thus,

AD_DB a AC_ AB
b 0 DB DC " AB 4D’
17. If two chords intersect in a circle, their segments are recipro-
cally proportional. Or (fig. 1 under 11 above),
AE _DE
CE BE’
18. If two secan’s intersect without a circle, they are reciprocally
proportional to their external segments. Or (fiy. 2 under 11),
| 4B_ AE
AO_AD'_

19. If a tangent and a secant intersect, the tangent is a mean
proportional between the whole secant and its external segment.
Thus (fig. 3, under 11), AC AB

4B~ 4AD"

20. Pythagorean Prop.— The square on the hy potenuse of a right
triangle equals the sum of the squares on the other two sides.

21. One side of a regular he:cagon inscribed in a circle s equal
b0 the radius.

22. One side of a regular decagon inscribed in a circle of radius
7 i3 x in the proportion z
r—z

23. Theorems about the areas of a rectangle, parallelogram, tri-
angle, trapezoid, circle, etc.

4:

r
x
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VII. GENERAL EXERCISE

114. General Exercise Including both Linear and Quadratic
Equations and Exercises involving Geometrical Theorems.

1. To find the area
of a trapezium.

If A=area of trapezium,
and a, b, ¢, k, k! represent
measured lengths as indi-

~ cated on the diagram, show
that

A=}[a(h+k')+bh+chl].

Calculate the area of a
trapezium in which a =10 ft., b =4 ft., c =2 ft., h = 7 ft., A/ = 11 ft.

b a ] c

2. To find the area of a segment of a circle included between
an arc and its chord.

Let v = number of degrees in arc AB,
¢ = length of chord 4B, 4 B
h = sagitta,
r = radius of circle, Y

A = area of segment.

SucestioN. The area of the whole circle = x72, and the area of any
sector is such a part of the whole circle as its angle v° is of 360°. From the
area of the sector must be taken the area of the triangle ABC to get the area
of the segment. Thus,

,2

A="T_

C
360 2" M)

Find the area of the segment of a circle whose radius is 10 in. if the angle
of the segment is 39°, its chord 6.68 in., and its sagitta 0.57 in.

3. If S = the number of right angles in the sum of the interior
angles of a polygon of = sides, by the theorem of the preceding
article we have the formula, S =2n — 4.

~ With this formula find the sum of the interior angles of poly-
gons of 3, 4, 7, 11, 25 sides respectively.
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4. If A = the number of right angles in one angle of an equi-
angular polygon of n sides, by the preceding exercise we have the
2n—4.

n

Find from this formula one angle of equiangular polygons of
3,4, 5, 6, 8,10, 12, 30, 100 sides respectively. Change the result
in each case to degrees.

formula, 4 =

6. If v is the number of degrees in the vertical angle of an
isosceles triangle, make a formula giving the value of b, one of
the base angles of the triangle, in degrees. Find b when v = 25°.

6. Show that the formula for the length ! of a belt passing
round two equal pulleys whose radii are r ft. and the distance
between whose centers is d ft., is
l=2mr+2d.

Find ! when r = } and d =34.

Nore. Pupils should search for practical
formulas, like that in Ex. 6, and bring them to class, showing their use.

7. A moving picture film, 120 ft. long, is made up of a number
of small equal-sized pictures. If these pictures were .1 inch less
in length on the film, there would be 720 more of them. How
long is each small picture ?

8. Make a formula for the area .§ of a regular polygon of n
sides one of whose sides is 8 and whose apothem is a. Find S
when n =9, s =1.5, a=2.07 in.

9. One of the base angles of an isosceles triangle is three times
as great as the vertical angle. Find the number of degrees in each.

10. Two angles are supplementary. One has d — 1 degrees and
the other has 6(d + 1) degrees. How many degrees are there in
each ? . _

11. How many sides has an equiangular polygon four of whose
angles equal seven right angles ?

- 12. Two parallel chords equally distant from the center of a
circle intercept arcs whose sum is % of the remaining parts of
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- the circumference. Find the number of degrees in each part of
the circumference. '

138. Two lines intersect so that 2n — 1 degrees represents the
size of one of the angles of the two pairs of vertical angles and
3n 4 6 the number of degrees in one of the angles of the other
pair. Find the number of degrees in each of the four angles.

14. If two lines are cut by a transversal so that 2 n — 5 is the
number of degrees in one of the interior angles and 10 » — 50
the sum of all four interior angles, find the number of degrees in
each of the eight angles formed by the transversal with the two
parallel lines.

15. The perimeter of a parallelogram is 360 rd. and the ratio
of two adjacent sides is 2:5. How many rods are there in each
side ?

16. Two adjacent angles of a parallelogram are 2n 4 10 and
3n — 20 degrees. How many degrees are there in each angle ?

17. An inscribed angle is subtended by 2n — 10 degrees and
the rest of the circumference is denoted by 57 4 20 degrees.
How many degrees are there in the angle ?

18. The arcs intercepted between two vertical angles formed
by two chords which intersect within a circle are denoted by
3y — 16 degrees and 2y 4 7 degrees. The remaining ares of
the circumference together equal 7y — 15 degrees. How many
degrees are there in the angle between the chords ?

19. If 4 = total area, V = volume, r = radius of base, = al-
titude, s = slant height, the formulas
for cylinder are V= =x*h; A =21+ 2 nrh.
for cone are V=4}mrh; A=xr*+ mrs.
for sphere are V=4#r; A=4m="
Solve these equations for r; solve those that contain & for &.
Many of the results of engineering experience are put in the
shape of formulas. The handling of these formulas is a simple
application of algebra.
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20. To find A4, the aréain square feet which the cross section of
a chimney ought to have to carry the smoke, if % is the height of
the chimney and F is the total number of pounds of coal burned
in an hour, we have .

A=—
Vh

What should be the cross section area of a chimney 60 ft. high

to carry smoke of 500 1b. of coal burned in one hour ?

21. To find the resistance in pounds of a locomotive and train
for different speeds.

Let R = resistance in pounds per ton of 2000 lb.,
V = speed in miles per hour.
Then, R=3+ {.

Find the resistance in pounds for every 2000 Ib. in the weight of the whole
train when it moves 36 miles an hour.

22. To find the grade resistance to the movement of a train.

Let @G = grade in feet per mile,
T = weight of the train in 2000 Ib. tons,
R = resistance in pounds.

Then, R =0.8788 GT.

Find B when G =8, T = 900.

23. To find a safe load that may be put on a ¢ pile ” so that the
pile will not sink under it.

Let W =safe load in pounds,
w = weight of the hammer of the pile driver used,
h = number of feet the hammer falls,

k = number of inches pile goes in at each blow, the head of the pile
being in good condition.

(The “ factor of safety’ used in the following formula is 6, that is, the
load will be only } of what the pile would hold and not sink.)

’ 2 wh
Th W= X
en, E+1

Find W when » = 80 ft., w = 2000 lb., ¥ = .5 in.
COLLINS’S ADV. ALG. — 9
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24. To find the number of bolts that should be put at the end
of the cylinder of a steam engine for safety.

Let N = number of bolts,
D = diameter of the steam cylinder in inches,
d = diameter of the bolts used in inches,
p = the pressure of the steam in pounds.

_b_
Then, N= 2400(d)

Calculate N when D =86, p = 100, d = 1}.
25. Two candles are of the same length. The one is consumed
uniformly in 4 hr. and the other in 5 hr. If the candles are

lighted at the same time, when will one be three times as long as
the other ?

26. A, B, and C bought a ship. A paid for ‘_;of it, B for 2

: n

of it, and C paid $p for the remainder. How many dollars did
A and B pay respectively ?

27. If I should buy goods at a price 20 9, hlgher than I paid
and sell them for the same sum, I should gain 25 9, less. What
per cent did I gain ?

28. A’s income is (—;of B’s income. A’s outgo equals of B’s

income, B’s outgo equa.ls p of A’s income. What is the ratio of

their savings ?

29. A dealer who buys mllk at m cents a quart and sells it at
n cents a quart makes a profit of p per cent. How much water
per quart has he mixed with it ?

30. If a monopoly trust buys a business having ¢ dollars capital
and paying d per cent dividends, how much water has been put
in the capital stock if it lowers the dividend rate by p per cent
and yet raises actual profits to n fold what they were ?

81. At what time between a and a + 1 o’clock is the minute
hand midway between 12 and the hour hand ? When is the hour
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hand after a o’clock midway between b o’clock and the minute
hand ?

32. A teacher looks at his watch when leaving school at noon.
When he comes back he finds that the hour and minute hands
have changed places. What time was it when he left ?

83. An army, whose length from van to rear is a mile, moves
forward. An officer is sent from the rear to the van and is required
to present himself to the rear again when the rear has reached
the point where the van was when the army began to move. How
far did the officer travel, if he did not stop at any time ?

84. A, B, and C start from the same point at the same time, A
going north at 3 miles per hour, B west at 4 miles per hour, and C
east at 5 miles per hour. B at the end of two hours starts at such
an angle as to intersect A. (1) How many hours after the start-
ing will B intersect A, and (2) how many hours after starting
must C turn and go northwesterly so as to intersect A and B
when they meet ?

85. By selling a horse for n dollars I gain p per cent. At
what price should I sell the horse and wait r days, money being
worth m per cent, to gain g per cent? Solve by both true and
bank discount.

36. A, B, and C walk at rates a, b, and ¢ (a < b <¢c) per hour.
They start from Washington at m, n, and p o’clock respectively
(m<n<p). When B overtakes A he is ordered by A to go back
and meet C. (1) How long after A starts will A and B meet ?
(2) How long after A starts will B and C meet ?

37. A and B run a race. A, who runs slower than B by a miles
in b hours, starts first by ¢ minutes, and they get to the » milestone
together. What are their rates of running ?

88. In still water a tug goes 6 miles an hour less when towing a
barge than when alone. Having drawn the barge 30 miles up a
stream whose current runs one mile an hour, the tug returns
alone and completes the journey in 1248 hours. What is the rate
of the tug in still water?
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115. Historical Notes. Though the Greeks were eminently suc-
cessful in perfecting elementary geometry, very little progress
was made by them in the study of either arithmetic or algebra.
They studied arithmetic, strange to say, from the standpoint of
geometry, representing numbers by the lengths of lines. One of
their notations for numbers used the first ten letters in their alpha-
bet to denote 1 to 10 (¢ =1, B =2, etc.), the next eight letters to
denote multiples of 10 from 20 to 90, and the last nine letters to
denote the hundreds. The fact that they used letters instead of
special characters for the first ten numbers probably explains in
part why they made little progress in algebra.

Diophantus, of Alexandria, Egypt, is recognized as the first
writer on algebra worthy of the name. It is supposed that he
was of Greek descent, but he wrote (about 350 A.p.) long after the
Greek learning had developed. In the first part of his ¢ Arith-
metica” hie solved both simple and quadratic determinate equations,
but he did not accept negative or surd answers for the latter.
Most of his book dealt with the solution of indeterminate equa-
tions of the second degree, in which analysis he showed great skill.
As a rule, no reference is made to such equations in elementary
algebras. We know as little of the life of Diophantus as we do
of Euclid’s life. The epitaph of Diophantus is often given as a
problem in algebra.

Chronologically, the next writer was Aryabhatta, who lived in
India about 500 A.p. The arithmetical and algebraic parts of his
book consisted merely of rules written in verse. The next Hindu
writer was Brahmagupta, who lived about a century later than
Aryabhatta. His algebra, also written in verse, included the
solution of equations, simple and quadratic, and some indeter-
minate problems, all written out in full in words. These writers
used credits and debts to illustrate positive and negative numbers.
Our present method of representing numbers by means of figures
is supposed to have originated in India about this time. Calcu-
lations made without the Arabic notation were largely performed
with a wire frame, or abacus, or its equivalent. .Thus, the Arabic
notation is arithmetic without wires.
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During the eighth century, by order of the Caliph Haroun Al-
Raschid (the caliph of “ The Arabian Nights”), the Hindu works
on arithmetic and algebra were translated into Arabic, along with
many other scientific books. In this way algebra came to be
studied by a considerable number of scholars in Arabia. Promi-
nent among the Arabian writers on algebra was Al-Chwarizmi, who
solved quadratic equations geometrically.

In the fourth part of his book Al-Chwarizmi attempted to prove
the theorems Va?b=aVvd, and Vavb=Vab (see §§ 75, 66).
This book is especially interesting because from it the Europeans
got their knowledge of algebra and of the Arabic notation for
numbers.

In the twelfth century appeared the third Hindu writer on
algebra, — Bhaskara. His algebra showed a great improvement
over the earlier books, using abbreviations for words, and being
almost symbolic. In various ways he tried to sugarcoat his
treatment to make it interesting. Thus, he gave the following
problem :

“The square root of half the number of bees in a swarm have
flown out upon a jessamine bush; § of the whole swarm have re-
mained behind. One female bee flies about a male that is buzzing
within a lotus-flower into which he was allured in the night by
its sweet odor, but in which he is now imprisoned. Tell me the
number of bees.” (A4ns. 72.)

His arithmetic contained a clear statement of the so-called
Arabic notation for numbers, including the 0. It took several
hundred years for the world to learn the use and importance of
" 0in the Arabic notation. The work of Bhaskara was known to
the Arabs as soon as it was published.

Algebra and the Arabic notation for numbers reached Europe
chiefly through Leonardo Fibonacci, the son of an Italian merchant
who represented his country in Barbary, receiving his educa-
tion there. He became acquainted with the Arabic system of
numeration and with the Arabic works on algebra. On his return
to Italy, 1202 A.p., he published his work ¢ Liber Abaci,” in which
he set forth the advantages of the Arabic system over the old
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Roman hotation with the letters I, V, X, ete., still in use among
his countrymen. His treatment was taken from Al-Chwarizmi’s
and the other Arab works on the subject, and was written out in
full in words. It had a wide circulation and helped materially
in spreading a knowledge of algebra among Europeans.

Three or four centuries elapsed after the first introduction of
algebra into Europe before European mathematicians took hold of
the subject with the idea of perfecting it. In the sixteenth cen-
tury two great results were accomplished: first, the perfecting
and establishing of the symbolic notation; and second, the solv-
ing of the cubic equation.

In the discovery and publication of the solution of the cubic
four persons took part. Of these Tartaglia is altogether the
most interesting personality. _

Tartaglia (real name Niccola Fontano) was born in Brescia,
Italy, in the year 1500 A.p. In 1512 Brescia was taken by the
French and many of the inhabitants were massacred in the
cathedral. The boy was left for dead; but his mother found
him, and nursed him back to health. His injury, however, made
him a stammerer, and gave rise to the name Tartaglia, which
means stammerer. His mother taught him to read and write.
Being highly gifted mathematically, he was chosen to the chair
of mathematics at Venice before he was thirty-five years old.
Later he became an authority on the subject of gunnery, which
was then interesting the European world.

Before this time, in 1505, Scipione Ferro had either discovered
a way of solving cubics of the form 2° 4 ma = n, or had found it
in an Arabian work. Ferro explained the method to his pupil
Fiori (or Floridus). In those days it was the custom to keep
such discoveries secret in order to be able to vanquish rivals in
intellectual combats and to attract students to the school of the
discoverer.

About 1530 Tartaglia made known the fact that he was in
possession of a method for solving a cubic of the form 2?4 pat=q.
Fiori, hearing of it, announced that he also had a method for
solving difficult problems. Tartaglia then challenged Fiori to a
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public contest to take place Feb. 22, 1535. Following the custom
then in vogue, stakes were deposited with a notary with the under-
standing that whoever could solve the most problems out of a
collection of thirty propounded by the other, was to get the
stakes. Tartaglia suspecting that Fiori’s problems would depend
on the solution of cubic equations, set to work to solve equations
of the form «®+ maz=mn, and succeeded in accomplishing his
purpose just ten days before the date of the algebraical duel.
When the contest took place, Tartaglia solved all his opponent’s
problems in two hours, and by reason of his success won much
fame. By 1541 he had mastered the general solution of the
cubic. (See § 111, ITL.) ‘

Cardan was much interested in the contest between Tartaglia

and Fiori, and as he had begun writing a book on mathematics, he
coaxed Tartaglia to explain his solution to him. Under the most
solemn promises by Cardan to make no use of the knowledge,
Tartaglia finally gave him the solution desired. But Cardan,
breaking faith, some time later published the solution in his Ars
Magna, the third earliest printed book on algebra, which appeared
in 1545. This accounts for the fact that until very recently all
algebras called the solution Cardan’s.
- Cardan, it seems, as soon as he learned the solution, taught it
to his students, one of whom, Ferrari, succeeded in reducing the
solution of the biquadratie, or equation of the fourth degree, to
that of a cubic, and in this way solved the bigquadratic.

After the discovery of how to solve cubic and biquadratic
equations, mathematicians turned their attention to the solution
of equations of still higher degrees, but all failed. Finally Niels
Henrik Abel (1802-1829) of Norway succeeded in showing that
the general solution of the fifth and higher degree equations can-
not be expressed in terms of radicals.

For further matters of interest in the history of algebra, the
student is referred to such works as Ball’s and Cajori’s histories
of mathematics.



PART II. APPLICATIONS AND THEORY

CHAPTER VI
GRAPHS
1. SIMPLE GRAPHS

116. Graph Paper. Unit of Measure. Graph paper is paper
very accurately ruled into little squares or parallelograms. Most
graph paper has the centimeter (0.4 in. nearly) as the unit of
measure, and divides each square centimeter into twenty-five
little squares. Since 10 mm. make 1 cm., one side of the little
square is thus 2 mm. in length.

117. Standard Reference Lines. Points on graph paper are
located by reference to two perpendicular lines called awes.

118. Axes. Two centimeter lines on the graph paper are made
heavier than the others and designated as the axes; the horizontal
one as the X axis, and the vertical one as the ¥ axis. The point
where these axes cross is called the origin. Other points are
located by saying they are so many units (centimeters or milli-
meters) to the right or left of the Y axis, and so many units above
. or below the X axis. On the graph diagram distances measured
to the right from the Y axis are positive, and those to the left are
negative; those measured upward from the X axis are positive,
and those downward are negative.

119. Location of Points. The distance to the right or left from
the axis of Y to a point is called its abscissa, or z distance; the
distance from the X axis to the point is called its ordinate, or y
distance. The abscissa and ordinate of a point taken together
are called the codrdinates of the point.

127
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1. In the figure, the abscissa of P, is + 2 and the ordinate +1;
the codrdinates of P, are £ = — 2, y=3; the coordinates of Pa are
P4 are a:._l 8,y—-—1 6;
of P; are z=14,
y=0; of Pyarex=0,
y=—16. For the
-rules for signs used see
the preceding article.

2. Write the coor-
dinates of the points
located by the letters
a,b,¢6,d, ¢ f,9,h i on
the diagram.

3. On a piece of
squared paper draw
two heavy lines over
two centimeter lines for axes as in the diagram just given. Now
locate the following points each by a dot on the diagram, writing
a beside the dot of the first point located, b beside the second,
and so on.

a (x=3,y=1). b. (z=+3,y=+3).

c (x=-—2,y=1). d (x=-1,y=2).

e. (x=24,y=-1.6). S (z=-12,y=—138).
9. (x=—.6,y=22). h. (=0,y=—24).

t. (x=—5,y=0). J. (w=—41,y= —1.6).

4. Make another diagram with axes and locate the following
points, understanding that the first number inside the parenthesis
gives the value of « or the abscissa, and the second number the
value of y or the ordinate.

a. (2,2). b. (2, 6). c. (—3,4.6).
d (—2 —48). e. (—3,74). £ (=3, —81).
g. (—4.9,0). h. (1.3, —2:6). i (0,0).

j. (0, —6.5). k. (12, —14). L (55,0)
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120. Graphs. If a series of points is “ plotted ” (that is, located
and marked on a diagram), representing values cf a quantity y
~ that changes as another quantity = changes, and these points are
joined by a running line, this line is called the graph of the law
or data that determined the points.

Often in books graphs are found constructed from statistical
data. Such data can come from a great variety of sources. Thus,
writers on history and economics use graphs to show to the eye
quickly the changes in population, expenditures, and production.
Scientists use them to show the laws of nature, engineers to show
the working of machinery, and business houses to show the
changes in prices, cost of production, sales, etc. In short, graphs
have a wide range of uses, and the student should learn to con-
struct and read them readily. In science and engineering graphs
are often constructed mechanically, as by the thermograph, baro-
graph, anemograph, ete.

1. Statistical Graph. The table gives the number of survivors
at different ages out of 100,000 particular persons alive at age ten:

AgE SURVIVORS Age SuRrvIVORS AGE SURVIVORS
10 100,000 40 78,106 70 88,569
16 96,286 45 74,173 75 26,237
20 92,637 50 69,804 80 14,474
25 80,082, 55 64,563 85 5,485
30 85,441 60 57,917 90 847
85 81,822 65 49,341 9% 3

Let 1 cm. on Y axis represent 10,000 persons, and 1 em. on X
axis ten years. Then coérdinates of first point are z =1, y =10.

2. Graph of an Equation. In the equation, y=3xz+5, we
see that y is a function of z, that is, depends on 2 for its value.
As z changes in value, y also changes correspondingly.

We see that for every value we assign to z there will be a corre-
sponding value for y. Such sets of corresponding values of « and
y can be taken for the cosrdinates of points. . If these points are
connected with a running line, we have a graph. Evidently any
equation, as y = 2* 44 z — 6, will have a graph to correspond to it.
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121. Graphs of Simple Equations or Equations of the First Degree
(§ 35).
1. Construct the graph of the equation 3z —4y=12.

TABLE
8z —4y=12

(z %) Pr.

(0’ - 3)

(1, — 2.25)
(2, — 1.6)
(8, —.76)
(4, 0)

(5, .16)
(—2,—4.5)

QN o RO oR

ExPLANATION of
how the values in
the table are found.

If x=0 in the given equation, 3z — 4 y = 12, the equation reduces to
—4y =12, whence y =— 3, as given in the table opposite a. If z=1,
8z —4y =12 becomes 38 —4y =12, whence, transposing 3, —4y =29,
whence, y = — 2.25, which isgiven opposite b; and in the same manner the
other values of y are found. We simply take any convenient values for z
and find the corresponding values of y, and write the pairs of corresponding
values in parentheses for the coordinates of points.

Having found the coordinates of a series of points, a, b, ¢, d, ¢, f, g, We
now locate these points on a diagram. The point @, whose cotrdinates are
(0, — 3), is located first by a dot with the letter @ beside it ; then the point b
is located in the same way ; and so on. Last of all a line is drawn through
these points,

The student may now construct in the same way the graphs of
the following equations. He can let z=0, 1, 2, 3, 4, 5, —2 asin
the preceding example.

2. 3z—2y=>5. 3. 3z+5y=15. 4. 2z—-Ty=—12.

b. The graph of a simple equation, or an equation of the first
degree, will be found to be always a straight line, as in Ex. 14.
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Proor. By clearing of fractions, transposing, and dividing by the
right member, we can put any equation of the first degree in the form

z +% =1. We have to prove that the graph of this equation is a straight line.
a

First by letting z = 0, we get y = b ; then by letting y =0, we get z = a.
Hence we perceive that the locus AMNB (see
diagram) passes through the points (0,0), , ¥
(a, 0), or M and N.

Let P be at (x, y), and suppose that MPN o P(z,y)
is a straight line. Then PNR and MNO are b v
similar triangles (having their angles respec- z |a-=z x
tively equal), and therefore their corresponding o aR Nis
sides proportional.
y_a—=z,
Hence, (1) = a

g a—zx

But from given eq., -+2——1 weget’b’—l——,or (2)

Now since the value of % from eq. (2) which gives the graph equals the

value of % from eq. (1) of the straight line, or conversely, we conclude that

all points of the graph must lie on the straight line, and all points dn the
straight line must lie on the graph of the given equation.

Hence, tolocate the graph, or locus, of any first degree equation, it is sufficient
to find ¢wo points. Letting z =0 and y = 0 in turn, as above, we get the two
points most easily located. A third point should be plotted as a check. If
the first two points are close together, we join the third to one of the others.

Construct the graphs of the following equations:

6. bz+3y=—10. 7. —2zx+5y=12.
8 6z—Ty=1. 9. 25x4+Ty=29.
10. 6z+5y=16. 11. 352+ 17y=—86.
12. 22=25y. 13. z=5.

SuvaeEsTioN To Ex. 18. y can have any value. Locate two points. The
graph is a line parallel to the Y-axis, 6 units to right of YY".

14. y=—3. 15. £_Y—_45. 16 TE8Y_y_ 4
y 273 7 —5 !
r=Y.

17.-3z—11y=0. 18. 19. z=—y.
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II. GRAPHICAL SOLUTION OF SIMULTANEOUS EQUATIONS

122. Value of the Graphical Method. Whether the algebraic or
the graphical method will give the answer more quickly depends
on the problem and the skill of the user, but the algebraic solu-
tion is always accurate, while the graphic solution is often only
approximate. One of these methods can be used to check the
answer obtained by the other, though verification is also available
for both. But for the student now the main value of the graph-
ical solutions consists in the fact that they throw a strong light
on the nature of simultaneous equations and on peculiarities that
may occur in them.

.

123. Graphical Solution of Pairs of Equations containing Two

Unknowns. 1. 2 ¥y 1 9 2 39 1 v
owns. 1. Solve (1)3 6=2 @) 5 10" 2 by the

graphical method, and check with an algebraic solution.

GRAPH SOLUTION.

1) 2z—y=3

(€%)) Pr.
0, — 8) a
(1.5, 0) b
(38, 3) c

(21) 22—3y=5

(=, ) Pr.

(0 —1.67) m
(2.5, 0) n
(3, .83) P

The codrdinates that satisfy both equations are those of the point d,
where the graphs cross. The codrdinates of darez =1, y =—1. Answers.
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AvrgeBRAIC SorutioN. (1) 22— y= 8 (1) 2z—(—1)=8. (§ 144.)

(21) 22—8y= b z=1. Ans.
2y=—2
y=—1. Ans.
2 3m+4y=10, :_592+6y=17,
) 4e4+y= 9. ) 6z+5y=16.
4 224-3y=43, 5 11z—14y=14.
10z y=7. | be+ Ty=a1
e 182 —10y =29, . {7m—9y=—22,
T |142—-16y=24 _ Clr=—4
8 11d 416t =64, [8z=5y,
C|Td—12¢=13. 13z=8y+1.
10. 112 —-3y=321, . - {7x+2y=76,
5z — 16y =585. 2¢—-3y=11.

SueeestioNn T0 Ex. 10. Since the numbers are large, the centimeter can
not be used as the unit of measure. The 2-millimeter unit can be employed
in this case.

124. Consistent Equations. The student may ask himself the
question whether if three equations, each containing two un-
knowns, were taken at random, the values of # and y obtained
by solving the system formed out of the first two equations would
have the same values as those obtained by taking the system
formed from the second and third equations, or by taking the
system formed from the first and third equations.

On the other hand, if the third equation was obtained by com-
‘bining the first two in some way, would the values of « and y
found by solving the system formed from the first two satisfy the
third equation ?

Exampre. (1) 112—10y= 14 @2) bxz+Ty=41

) 10x414y= 82
(3) r—24 y=— 68

Construct now the graphs of equations (1) and (2) and (3) to
the same axes. What do you learn ?

Test problems of § 44 in the same way.
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125. Inconsistent Equations. Construct the graphs for the fol-
lowing equations on the same axes:

(1) 4:6—-2y=7. (2) 4%—93/:—21. (3) 3a:—4y=—8.

Solve the system formed from (1) and (2) algebraically and
compare the answers with those on diagram obtained graphically.
Do the same with the system (1) and (3), and with the system (2)
and (3).

Write sets of three equations at random and see whether their
graphs intersect in three points or one point.

126. Systems of Equations in which One of the Two Given Equations
can be derived from the Other.
Construct the graphs for the system

D) 2z-5y=11; (2) ———-4y,

in which (2) can be derived from (1) by first multlplymg through
by 4, then transposing, and then dividing through by 5.

‘What do you learn about these graphs ?

Test your answer by making and testing other similarly con-
structed systems. Is then the system of marking equations, in
which the equation marked (1) at the start is marked (1) with
subseripts throughout, justified ?

127. Systems of Equations which differ only in their Known Terms.
Construct the graphs on the same axes for the system
() 22—5y=12, (2) 42=10y+6,

in which, obviously, (2) can be changed into 22— 5y =3.

‘What do you find true of these graphs ?

Test your answer by constructing similar systems which differ
only in their known terms.

We learn then that whenever by transposing, and multiplying
or dividing through, two equations can be made to differ in their
known terms only, their graphs are parallel.

a. The graphs of three linear eqs. each having two unknowns may intersect
in 0, or 1, or 2, or 3 points (not at infinity), or in every point. Explain.
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128. Solution of Problems by Graphs. Any proportion problem
in arithmetic can be solved graphically. The origin is always
oue point on the graph and the terms of the given ratio equaling
x:y are the respective abscissa and ordinate of another point.
The answer sought is found on the diagram as the number
corresponding to the third given term of the proportion. In this
way graphs can be constructed giving the cost from the number
of articles, meters from feet, pounds from kilograms, interest
from time, circumferences from diameters, etc., and vice versa.

Some problems in rate, time,
and distance have two origins,
O and O'. Thus, if two men
20 mi. apart ‘go towards each
other, the one at 10 mi. and the
other at 5 mi. an hour, P on
the diagram gives the distance
and the time each has traveled when they meet.

The student should make proportion and time-rate-distance
problems like the above and solve them by the graph method.

—

o Hours

III. GRAPHS AND GRAPHICAL SOLUTIONS OF QUADRATICS
129. ' The Various Graphs of Equations of the Second Degree.
1. Construct the graph of the equation 2?4 y?=4.

SoLuTIiON
2 4yr=4

(z, ¥) PoinTts

(:l: 21 0) a1, G2
©, £2) by, be
(d: 'Bv + 19) €1y C2y C3y C4
(:t 19 + 17) dls d‘Z, d:’n d4
(£ 1.5, £ 1.3) | ey, e, €3, €4

a. The student may not see
how (0, &+ 2) gives two points,
or how (1, + 1.7) gives four
. COLLINS’S ADV. ALG. — 10
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points. He should observe that (0, + 2) is really the two points, (0, 2) and
(0, — 2); also that (+1, & 1.7) denotes four points, viz. (1, 1.7), (1, —1.7),
(-1,17), (=1, —1.7). Notice that the coirdinates of each of these six
points satisfy the equation 22 + y2 = 4.

Construct now the graph of (1) «*+ y*=9.

From these examples we readily see that the graph of an equation
of the form x* + y® =1 is a circle whose radius is r.

Hence, graph of an equation of the form #* 4+ y?>=1? can be
immediately constructed by using r as radius and origin as center.

Construct the graphs for the following equations :

@) 2+ y*=16. 3 @+ =12 4 2?+y*=1.
2. Construct the graph of
the equation 2?4 2 y*=4.

SoLuTiON
224+ 2y2=4

(=, ¥) PoinTts

(£2,0) ai, az
0, + 1.4) b1, g
(£ .5,+£147) [ c1y €3 €3, C4
(+£1,+£1.2) dy, dg, d3, dy
(£1.5, + -9+) €1, €2, €3, €4

b. Meaning of Imaginary Values for x and y in finding Codrdinates for
Graphs. Suppose we assign the value x = 8 in the equation just used, 22 +
2y? =4, Making this substitution, we get y =v'— 2.5. Thus, forz =3, y
is imaginary. This means that there are no points of the curve as far from
the origin a8 2 =4 8 or £ =—3. The curve stops, in fact, with the value
z =+ 2 at the right, and with £ =— 2 at the left. Similarly, if we put
y=+42, we get x=V—4. We see from the diagram that there are no
points of the curve above y =+ 1.4, and none below y =— 1.4.

Construct the graphs of the following equations:

1) ©#4+44=5. @) 32+ 4y2=8. 3) 102? 4 y*=10.

c. These graphs, or curves, are called ellipses. They occur as the graphs
of all equations of the form ax? + by? = ¢, that is, of all equations in which

the coefficients of 22 and y2 are unequal, and the sign between the terms in
the left member is 4.
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If the coefficients of x2 and y2 are close together in value, to what curve
does the ellipse approximate ? What happens if they are quite unequal ?

The earth moves round the sun in an elliptical orbit, nearly circular,
Halley’s comet, on the other hand, moves in a very long ellipse.

@) #+92=18.

(3) 1022 4+1238=24. (6) 922 +129*=1.

3. Construct the graph of the equation 2? —2y*=4.

SoLuTION
22 — 2y3 =4
(x, ¥) PornTts
(i 21 0) ay, G2
(0, imag.)
(1, imag.)
(Z’Z 3’ + 1'6) bl, b21 b3’ b4
(i 47 + 2~5-) C1, C2y C3, C4
(:i: 5’ + 3.2 +) dl, d?’ dsy d4

d. This curve is called an hyperbola.
An examination of the values in the table,
noting from the equation how they will
continue to increase indefinitely, shows
that one branch of the curve will continue
out indefinitely to the northeast (to follow
the customary map rules for directions),
another to the southeast, another to the
northwest, and a fourth to the southwest.

The imaginary values of y show that
no points of the curve lie inside of the
region inclosed by the lines z =+ 2, and
r=—2.

Notice that the equation used is identically the same as that of Ex. 2 except
that + in the ellipse equation is replaced by — in that of the hyperbola.

The hyperbola is the orbit of comets which come into the solar system,
go round the sun, and then go out again never to return.
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Construct the graphs of the following equations:
Q) #—4y2=4.  (2) 42*—3»*=10. B) 2y*—3a2'=6.
(#) ?—P=9. ®) y—2=9. (6) ©¥—10y=1.

4. Construct the graph of the equation zy=1.

SorLuTION
=1

(x, ) Prs. '
(.5, 2) a
@€,1 b
(2, .6) ¢
@, .3+) d
.(_.'5’.— .2) . .e.
-L,-1 [ S
(— 2$ _'5) g
(-8, —38t)| &

Construct the graphs of the following equations:
@) ay=10. 2) zy=1. ®3) zy=—2. (4) zy=>50.

e. These graphs are hyperbolas, though coming from equations quite dif-
ferent from those in 8. They differ from the hyperbolas we have just been
constructing in having their ‘¢ axes’ extend diagonally instead of east and
west, or north and south, This is the graph for inverse proportion (see
§ 145). Evidently z increases as y diminishes, and vice versa.

The graphs just constructed can be used to read off corresponding values
for quantities which are ¢nversely proportional just as we read off correspond-
ing values for quantities which were directly proportional in § 128. Thus, if
& man is paid $10 for doing a job of work, 2 is the number of days he works,
and y is the wages per day, then the graph for zy = 10 (see eq. (1) above)
will give a value for z corresponding to any assigned value of y, or a value
for y corresponding to any a.ssxgned value of z.



GRAPHS AND GRAPHICAL SOLUTIONS OF QUADRATICS 139

5. Construct the graph of the equation y*=3z+ 3.

SoruTtioNn
lf‘ =38z + 3

(=, ¥) Prs,

(_ 11 0) a

0, £1.7) b1y ba
1,£25%) [ey
@, + 3) dyy dg
(6, :}:4.6') €1, €3

J. This graph is called a parabola. It
has apparently something like the same
shape as the hyperbola, but it has only
one branch. If z is put equal to — 1.1 or
any numerically larger negative number,
y is imaginary. The parabola is the path
of projectiles like bullets and is the curve of headlight reflectors.

Construct the graphs of the following equations:

@) ¥=2z+4. @) ¥=2z—4. ®B) ==

4 *=2y+4. ®) *=12y—3 6) 2*=y.

6. Construct the graph of the equation (z—y+2) (z+2y—1)=0,
or+ay—2yP:+4+ax+4+5y—2=0.

Presumably this is the equation of the two straight lines,
2—y+2=0,and z + 2y —1=0, since values that satisfy either

- of them satisfy the given equation.
| (See § 121, 5.)
SoruTION
2 tay—22+ 2+ by—2=0

(@, 9) P1s.

(lor—2,0) ay, Gz
(0, bor 2) b], be
(.4, Bdor24 ) Cyy C2
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SoLuTION
2—y+2=0 z+4+2—1=0

(=2,0)| 1,0 |p
©2) Im| |(0.5) |q
(424 | n| | (4,8

g. Wesee from the diagrams that a,,
ag, by, bs, ¢y, cg, are all on line In or line
pg. This rule would hold if any num-
ber of points were obtained.

The pupil may have some trouble in seeing how the coordinates of a;, as,
by, be, €1, c2, were found. Notice if y=0, the equation reduces to 22+4z—2=0,
whose roots by factoring are 1 and —2. Again, if z =0, the equation reduces
to2y2—5y + 2 =0, whose roots are 2 and .5. If x = .4, the equation reduces
to y2—2.7y + .72 =0, whose roots are 2.4 and .3. If z =2, the equation
reduces to 2% — Ty — 4 = 0, whose roots are 4 and —.5. As a rule in such
cases, the factoring method cannot be used, and we resort to that of § 100.

130. Effect of Change of Origin on Equations. Reverting to the
figure accompanying Ex. 1, § 129, we see that if O' is taken as the
origin instead of O, every abscissa will then be increased by 2
over what it was, and every ordinate by 1. The equation of the
circle now becomes

(z—20+(y—1)'=4,
or P+yP—42x—2y+4+1=0.
Thus we see that an equation of this form, whose coefficients of «*
and y? are equal, gives a circular graph, but one in which origin is
not at its center. :

A similar change could be made in the equations of the other
graphs without changing the graphs themselves.

131. Graphical Solution of a Quadratic Equation containing One
Unknown Quantity. To construct a graph two unknowns are
necessary. In the present problem one of these has to be
introduced.

1. Given 32* 442 =20, to find values of = by graph method.

SorurioN. Let (1) y = 22 ; then substituting y = 22 in the given equation,
we have (2) 8y + 42 =20. (Solution continued on page 142.)
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a. A piece of fine black thread can be laid so as to pass through the
several points located on the squared paper. The position the thread takes
when it passes through the points locates the graph very closely.
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Q) y=2. @) 8y +4zx=20. We must now construct
the graphs for equations (1)
(CN) Porxts @, v) Prs.| and(2). Valuesare assigned
(0, 0) 0 (0, 8.7) n to y and the corresponding
values of z are calculated as

(1,1 a, e (5, 0) m | in Chapter IV,

—_ Locating the several points
=24 .7 (=310D]» for equation (1) on the
(£3,9 6 g squared paper with refer-
(& 8.5,12.25) | d, b ence to two axes, marking them with their letters,

and joining them by a running line, we have the
(ete., ete.) etc. figure as shown in the diagram, p. 141. Joining

the points located by equation (2) there results
the straight line mnp. These two graphs cross at b and %, or at z =2,
and z = — 8.4-, which are the roots sought.

Cueck. Solving 822 + 4 z = 20 by completing the square as in § 100, we
have x = 2, and z = — 8.33+.

b. The graph of y = 22 is (§ 129, /) a parabola. The unfinished ends are
known to extend on indefinitely, Have students practice making this graph.

c. Observe that the curve y =2, once constructed, can be used in the
solution of any quadratic containing one unknown. It only remains in each
particular problem to locate the straight line by means of its Eq. (2).
‘Where this straight line crosses the parabola are found the values of z sought.

Construct the parabola with ink and the straight line with lead pencil
Then the lead pencil mark can be erased when one begins a new problem.

Solve the following equations by the graph method, and check
by completing the square method:

2. *—22—8=0. 8. 32*—2=0x - 4. 12234-2=6.
6. 8°—1T2=115. 6. T2*—39=8=. 7. 104+16zx=—62"
8 322—22="7. 9. Ta*+14w=21. 10. 52°—20=0.
11. Ta’452=381. 12. 3*+4x=4. 13. b2 —Ta=1.
14. Solve by the diagram #?=7, 7.e. extract square root of 7.
SorurioN. Corresponding to y =7Tisz =26+ Ans.
15. Find by the diagram V3; v28; V7; V12; V.9; V64
16. The diagram can also be used to square numbers. Thus
corresponding to #=1.4 is y =2-, which is the square of 1.4
17. Find by the diagram 1.8%; 2.5%; 75% (or .75%) ; 3.4
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132. Solution of Simultaneous Equations by Means of Gl;aphs.

1. Sol @) 92* +13y* =117 .
olve { @) oty=2 by the graph method
(1) 922+ 182 =117 (2 z+y=2

Locating the several points
@ +3) en 62 and joining them, we have the

(£ 1, +£2.9)|dy, da, ds, ds (0,2) |m| graph as represented in the
2. 1925 2.0 figure. Evidently the graph
(£2 £25) 1 o & & 20 |=» of 922 4+ 13y% =117 is an ellipse
(£3, £1.7)b1, by b3, by [ | (h—1) | P | whose longest axis is 7.2 and
(+8.6,0) ay, az whose shortest axis is 6.

The graphs cross at h and k, whose codrdinates are

z=—.9, q [z=38"
{y=2.9, an {y=—1.3"
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To check these answers, the problem is solved by the method of § 109,
X z=38.3, z=—.9,
whence is found
y=—18, y=2.9.

Solve the following by the graph method, and check by a purely
algebraic solution. The graphs of equations like 2+ =9 can
be constructed very quickly with a compass. How is the radius
found in each case ?

{w’+y’=36, 5 {:t’+3/’—40=0, . {a:’+3/2=37,

c4+y=_8. 3x—y=6. r—y=>.
s {w’+y’=25, ] {:ﬁ+y’=169, {w’+y’=121,
" l424+3y=20.  |3z4+9=2y Sx4y=46.

SveeesTioN. The graph of 22 4 2y? =384, as

{9” +29 =34, explained in §129, 2, is an oval, or an ellipse

c+y="T. in shape. The method of solution is precisely the
same as in Ex. 1.

0. {4x’+y’=25, 10. {99:’+4y’=72,
2¢4y="T. . Sz—3y=1.
2¢—y=4. z—3y=1

18, {2x’—my+y’=7, 14, {3w’+2wy+2y’=35,

" l4z—38y=5. dz—5y=T.

Q) ?2-24°=1, Sorurron. The graph for equation (1) is

15. { (§ 129, d) different from the preceding ones,

(2) ©+6y=3. owing to the minus sign before 2y2. The

method of solution, however, is precisely the same as before, Note that
(£ 2, £+ 1.2) gives four points.
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M) B—2yp2=1 @) z+6y=3
(1,0 a, agz G, 0) m
(£2, +1.2)| b1, ba, b, b © .5 |n
(£8 £2) e, e 0a & (-4,12) | p
(x4, £27) | dy da, dsy a1
(etc., etc.,) | ete.

16, {(1) @+ =16,
(2) zy=>.

Constructing the
graphs through the
located points, we
have the accompany-
ing diagram. The
four unfinished ends

of the curved graph extend out indefi-
nitely. The curve, it is clear, consists of
two parts. It is an hyperbola.

The straight line graph of equation (2) crosses the right-hand branch of
the hyperbola at z =1.1, y = .3+, and the left-hand branch at z =—1.6—,
y =.7+. Checking the answer by a purely algebraic solution (§ 108), we get
the same results.

Sovution. The graph of (1) is, of course,

a circle whose radius is 4.

The graph of
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@) 2y =5 (-1, =5 | &

Q, 6) a1 | (-2, —25) | b
@, 2.5) az | (=8, —17) | bs
@, 1.7 as | (—4, —1.25) | b,
(4, 1.25) as | etc., ete. ete.

equation (2) is an hyper-
bola, but turned through
an angle of 456° as com-
pared with that of Ex. 16.

Solve by algebra as well
as by graph, being careful
to get four values for z
and four for y.
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17. {3ﬁ’—y’=47, 18. {x+2y=9,
z4+y=9. 3y —52'=43.

19. {2@’—3zy+y’=8, 20, {z’—2y’=—7,
z4+y=4. z+y=9.

21, {2y’—w’=—23, 23, {3w’—4y’=11,
z—2y=3. 4z —y=10.

23, {x’+y’=9, 24, {3z"+2y’=6, 25 {4z’+9y’=73,
3xy=1. xy=4.

of that of § 131, but is pushed down so that

26 { Q) #—y=T, Suacesriox. The graph of (1) has the shape
(2)32—y=9.  the curve crosses the axis of X.

”.{ac’ 3y=19, 28, {a: 293=1, 29.{ 2y=T,

z—y=3. z—3y=6. 2y=3.

@. An equation of the form az? 4 ay? = b has a circle for its graph.
An equation of the form ax? + by? = ¢ has an ellipse for its graph.
An equation of the form ax? — by? = ¢ has an hyperbola for its graph.
An equation of the form 2y = a has an hyperbola for its graph.
An equation of the form az? 4 by = ¢ has a parabola for its graph.
An equation of the form ax 4 by? = ¢ has a parabola for its graph.

133. Graphical Significance of Imaginaries (§ 83) in the Solution
of Equations. Whenever upon solving two simultaneous equations
the roots come out imaginary, it will be found that the graphs of
the two equations do not tntersect at al. See § 129, b. '

1. {"""‘y’=4’
z+y=3
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Constructing the graphs, we have the figure as represented, the
graphs not intersecting. Solving by a purely algebraic method,
we get,

_3+vV -1 _3Fv-1
r= ——2———, y__z—

Construct the graphs in the following, solving also by algebra
and verifying:
2 {x’+y’=36,_ 3 16 22— 9 y2 =144, 4 2y =15,
" lz—2y=14 ) {6x=y. ’ {:c+y=4.

134. Cubic Equations, or Equations of the Third Degree, containing
One Unknown, solved by the Graph Method of § 131.

1. ?*4+42—4=0.

Let, (1) y = #3; then, on substituting, (2) y +4z=4.
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M y==% @ y+diz=4
(0, 0) O a0 |n
(1, 1) ﬂ ©,4) |n
(-1, -1 |2

2, 8) b

(=2,—8) (b

(3, 27) &

(=8, —-27) | ¢

Constructing the .two graphs
from the tabulated data, we see
that they intersect at z = .8+.

2. 32*+42—T7=0.

3. b2*4+122=15.

4 44— 192442=0,

5. The graph of this article
can be used to extract the

cube root and to cube num-
bers. See § 131, 14-17.

135. Equations of any De-
gree in One or Two Unknowns
can be solved by the graph
method. However, the com-
plexity of the shape of the
graph rapidly increases when
the degree of the equation

goes above the second degree, with resulting difficulty in the
construction.

Light is thrown on the solution of systems of equations by the
use of graphs. We shall now consider an example of such graph-
ical explanation, showing how the various graphs in a system in-
tersect one another.
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136. Comparison of the Algebraic and Graphical Solutions of the
System.
Q) r—py=17 2) x—y=1

':r'—y'—’l

oy =2

(3) 224+ z+yr=T [(1)+(2)] (6) 2*+2zy+y2=9 [(3)+(4)]

(L) 22 —2zy+2=1 (61) z+y=+3 (Root Ax.)
(4) 3ay =6 (Sub. Ax.) (2) z—y=1
(4) xy =2 sx=2 y=1;o0r,z=—1,y=-2.

The graph of a® — 3* =7 is the curve resembling that of § 134.
The equation z24-zy 4 y* =T gives the ellipse, 2y =2 gives the
hyperbola, and # —y =1 the straight line. Eq. (1,) represents
two coincident straight lines (§ 129, 6). All these curves intersect
in (2,1)and (— 1, —2). Theellipse and hyperbola intersect also
in (1,2) and (— 2, —1).

If the graphs of one pair of equations have the same points of
intersection as those of another pair, the two systems of equations
are said to be equivalent. The diagram shows quickly to the eye
which systems of the preceding sets of equations are equivalent.



CHAPTER VII

RATIO AND PROPORTION
1. PROPORTION PROPER

137. The ratio of two quantities a, b is found by dividing the
first by the second.

A proportion is an equation whose two members are ratios.

Proportions are written in two ways and read in two ways, both
meaning the same thing. Thus,

elther:: b=c:d, (The single colon denotes division. For-

o 3= %, merly a double colon was used instead of =.)

may be read “a is to b as ¢ is to d,” or “the ratio of a to b equals
the ratio of ¢ to d.”

138. Definitions. The first term of a ratio is called the antece-
dent and the last term the consequent. The first and last terms of
a proportion are called the extremes, and the second and third
terms the means. If the second and third terms of a proportion
are the same quantity, this quantity is called a mean proportional
between the first and last terms.

139. Fundamental Theorems about a Proportion.

1. If four quantities are in proportion, the product of the extremes
equals the product of the means.

I %‘= g, then ad=bc. (By Mult. Ax.)

. SuecesTiON. Both sides of the given equation are multiplied by bd, or it
is cleared of fractions.
COL. ADV. ALG, —11 151
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2. Conversely. If the product of two numbers equals the product
of two other numbers, the factors of either product can be made the
extremes, and the factors of the other the means of a proportion.

If ad = be, then %=Ec' (By Div. Ax. Explain.)

140. Allowable Changes in the Order of the Terms of a Proportion.
1. Alternation. If four numbers taken in order are in propor-

tion, the ratio of the first to the third equals the ratio of the second to
the fourth.

1 2=C then =2, (Mult. Ax. Mult; b,
5 d,t en ~=— ult. Ax. Multiply through by .

2. Inversion. If four numbers taken in order are in proportion,
the ratio of the second to the first equals the ratio of the fourth to the
third.

If $=<, then 3: i (Div. Ax. Divide 1 by each member.)

141. New Proportions from a Given One.

1. Addition. If four numbers are in proportion, the ratio of the
sum of the first and second to the first or second equals the ratio of
the sum of the third and fourth to the third or fourth.

It 2= then %+1=5+1,m“+b=°—ﬂ’. (Add. Ax)

b b d
Also, b = Q’ whence L +1= Q-}-l, or at b=c +4d (Add. Ax))
a ¢ a ¢ a ¢ )

2. Subtraction. If four numbers are in proportion, the ratio of
the difference of the first and second to the first or second equals the
ratio of the difference of the third and fourth to the third or fourth.

Proved in manner similar to addition.

a. Addition and subtraction have been called respectively ‘ composition **
and ‘“division.’”

142. A Geometrical Meaning given to the Preceding Theorems.
A theorem in geometry says, If a line is drawn parallel to the base
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of a triangle, it divides the sides proportionally, or a:b=c:d.
By the preceding theorems we can now infer that the following
proportions are also true:

4D_BD BD_EC.

AE EC’ DA~ AE’

AB_AC  AB_AC

AD™ AE’ BD EC’
The two triangles ABC and ADE are simi-
lar, being mutually equiangular. Hence, B % C

AB: AD = BC: DE. °
‘We can see now that all these results can be summed up very

simply in the single statement, that the ratio of any two corre-
sponding lines in the figure equals the ratio of any other two corre-
sponding lines.

143. Other Proportions from a Given One.

1. Powers and Roots. If four nmumbers are in proportion, like
powers or like roots of these terms are in propoirtion.

1
, then (l.=£, and a—l= Ql (Power and Root Axs.)
i A

2. Continued Proportion. In a series of equal ratios, the ratio of
the sum of the antecedents to the sum of the consequents equals any
one of the ratios.

1f 2= ’9 = %(= r), then a =gr, ¢ = hr, e=kr, since in each case

g h
the dividend (numerator) equals the divisor times the quotient.
Then, adding these equations,
at+c+e=gr+hr+kr=>g+h+k)r. (Add Ax.)
a+$c+e a4+c+e a .
ST Y o or — 2T 2 ==, (Div. Ax.and Ax. 8. § 36.
gtk " grark g ¢ )

This result easily takes on a geometrical meaning by reference

to the figure of the preceding article.

Let e=DE, g=AB, h= AC, k= BC.
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Then, we have, the ratio of the perimeter of triangle ADE to the
perimeter of triangle ABC equals the ratio of any two corresponding
© stdes.

By using a letter for each side whatever the number of sides a
polygon has, this theorem is easily extended to the case of any
similar polygons. In fact, this theorem appears in algebras
mainly because it has this application in geometry.

144. Exercise in Proportion.

If y:2="7:2, find what the ratio z: y equals. See § 140, 2.
From 12 2=18 y find the ratio of z to y. See § 139, 2.
From 4 —9y =2z 4 5 y find the ratio of z to y.

From 3z+y:y=17:8 find the ratio of x to y. (§ 139, 1.)

. If the ratio of m to n is , what is the ra.tlo of m+n to
m—n? (§141.)

6. Solves’—4:0*—9=2>—5x+6:22+42+3. (§139,1)

7. Ifa:b=b:c,provethat a+b:b+c=a:d.
(141, 1, and § 140, 1.)
8. What number must be added to each term of the ratio m:n
so that the new ratio may equal the ratio of p:¢? (Let = the
number.)

A R SR

9. Find a mean proportional between a’+ 2ab + b* and a'—
2 ab+b. (§138.) (Letz=1mean proportional.)

10. Find theé fourth term of the proportioﬂ whose first three
terms are ]—‘ 1, 1
a’b ¢
11. Find z from the proportion

6r+a:424+0=32x—0:2x—a.
12. Four given numbers are represented by m, n, p, . What

number added to each will give four numbers that are in propor-
tion? (Let = the number added to each.)
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13. Find two numbers whose sum, difference, and product are
proportional to m, n, and p. (Let z and y be the numbers. See
§ 143, 2, where a, ¢, and e are proportional to b, d, and f.)

14. Find two numbers such that their sum is to their differ-
ence as 5: 1, and their sum is to their product as 5: 4.

15. Prove that if the terms of a:b=c:d are divided by the
respective terms of a': ' = ¢': d', the quotients are in proportion.
2a+3c_8b+12d
2a—3¢ 8b—12d’

SueceestioN. First alternate the given proportion, then multiply the first
ratio by §, and the second ratio by 4, then apply ‘¢ addition’’ and ‘¢ subtrac-
tion ** to both ratios in turn, and finally divide the terms of one proportion
by the corresponding terms of the other.

17. Ifa:b=c:d,provethata® 4+ b*: a* — bV =c?+ d?: * — d2

18. If a:b=c:d,prove that a +b:c+d=Val+¥: Vi+d’

Sveerstion. Take first a:b =¢:d and a?: 5% = ¢2 : @2 by ¢ addition.”

16. If a:b=c:d, prove that

" 19. Prove that either root of 2* — ¢ = 0 is a mean proportional
between the roots of «* 4+ pz 4 ¢=0.

20. If a:b=c:d show that ab+ cd is a mean proportional
between a? 4 ¢? and b 4 d2

SucGEsTION. State the proportion, and then multiply means and extremes
together. Show that this equation reduces to the given proportion, if a: b
=c:d. Then reverse the steps.

21. What is the ratio of the mean proportional between a and
b to the mean proportional between a and d? Give this in its
simp.lest form.

22. If (a+b+c+d)(a—b—c+d)=(a—b+c —d)(a+b—c—d),
prove that a:b=c:d.

28. Ifa:b=4:5,d:f=5:2,e:¢=6:7,d:b="7:3,and f:c
=4:3,a:b:¢:d:e: f=what continued ratio of numbers ?

24. The product of two numbers is 112, and the difference of
their cubes is to the cube of their difference as 31:3. What are
the numbers ?
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II. VARIATION

145. Variation. One quantity is said to vary directly as an-
other, when the two are so related that the ratio of any two
values of the one is equal to the ratio of the corresponding values
of the other. The special symbol for variation is «, read “varies
as.” Practically it is little used.

Direct Variation. In ordinary scales where a weight is moved
from 0 along a scale beam until the scale balances, the weight of
an object w varies directly as the distance d the scale weight is
moved, or wocd. Thus, if the scale weight is moved from 0 twice
as far one time as another, the first object is twice as heavy as
the other. The circumference ¢ of a circle varies as its diameter
d, or cxd. The graph for direct variation is a straight Iine.
See § 123.

Inverse Variation. The daily wages w a man gets for doing
a job for a fixed sum varies inversely as the number of days n

he works, or 'wocl. The greater the number of days he works,
n

the less money he gets per day. The number of revolutions n
the driving wheels of a locomotive make in going a mile varies

inversely as the diameter d of the wheels, or oc-; .

Other Forms of Variation. The distance s through which a fall-
ing body moves varies as the square of the time ¢ it is moving,
or sct’. Thus, if the time is trebled, the distance is multiplied
by 9. Again, the power of attraction @ of the heavenly bodies
for one another varies inversely as the square of their distance
apart d, or .

1
ac—.
&

In any problem in variation the symbol o« is replaced by an

equality sign by introducing a constant factor ¢ before the right

member. Thus, wocd becomes w=cd; w oc% becomes w = f; ete.
n
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“In any given physical problem ¢ has to be found by experiment to
fit the units of distance, weight, time, etec. Thus, in 8= cf?, if dis-
tance is measured in feet, time in seconds, and gravity is the force,
¢=1}g, in which g = 32.16.

The graph for inverse variation is the hyperbola, since w - n =¢,
where c is constant. See § 129, 4 and e.

146. Variation a Form of Proportion. To show that variation is
a form of proportion, take the case of the diameter of a circle and
its circumference.

Thus, let d, and d, be the diameters, and ¢, and ¢; the circum-
ferences of any two circles. Then,

a_a,
d d
(By theorem : The ratio of the circumference to the diameter is the
same for all circles.)

By alternation (§ 140, 1), it follows that

a_di,
& dy

Thus, the ratio of any two circumferences equals the ratio of
their diameters. This is precisely what is meant by saying the
circumferences of circles vary as their diameters, or that cocd.
If the circuinference of a circle is doubled or trebled, its diameter
likewise is doubled or trebled.

Again, since the area of a circle equals = times the square of
its radius, we can say that the areas of circles vary as the squares
of their radii, or acc?®.

To show this let a, and a, be the areas of two circles, and r,
and 7, their respective radii. Then,

P (By dividing both terms by =, § 29.)

Since a problem in variation is a problem in proportion, three
terms are always given to find the fourth. Two of these terms
give a ratio, whose value is the constant ¢ referred to in § 145,
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To solve a problem in variation, (1) First replace the symbol o
by = at the same time introducing the constant factor c¢ before the
right member.

(2) Then sybstitute two of the given quantities which correspond
in the equation found in (1), getting the value of c therefrom. Sub-
stitute this value of ¢ and the remaining given quantity in the equation
of (1) to find the fourth or required term.

147. Exercise in solving Problems in Variation.

1. The weight Wof a cube varies as the cube of its edge e, or
Woced. If when Wis 26 1b. e is 4 in., what is W when ¢ is 5 in. ?

SorurioN. W =ce®. Then 26 =c¢ x 64, whence c=43. Then W=4}
x 125 = 50.8- Ib.

2. The cost C of plastering a wall varies as the product of its.
length I and height &, or Cclh. If it costs $11.70 to plaster a’
wall 21 ft. long by 12 ft. high, what will it cost to plaster a wall- .
37 ft. long by 11 ft. high?

3. The distance s fallen by a body from rest varies as the
square of the time ¢ during which it falls. If owing to the
resistance of the atmosphere it falls only 560 ft. in 6 sec., what
distance will it fall in 5 sec.?

Nore. When the resistance of the atmosphere is taken into account, the
law holds only approximately, but the error will be slight.

4. The illumination ¢ of a book by a lamp varies inversely as
the square of the distance d of the book from the light. If the
illumination at 18 in. is 48 candle power, what quantity of light
will fall on the book at 4 ft.?

6. If surface of sphere is given by formula s =4 % how does
s vary as r changes ? Ans. s varies as square of 7.

6. If v=4nr"is formula for volume of a sphere, how does v
vary with r? If r is doubled, what happens to v? How does r
vary with v? Ans. As the cube root of ».
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7. Tnt=2 r\[" how does ¢ vary with 1? With g?
Ans. to last. Inversely as the square root of g.

8. If T is tension on a string, W the weight of a unit length
of it, 7 its length, and N the number of its vibrations per second,
tell from the formula

VT  ~NT'

W VW
how N varies with 7'; with W; with L

148. Variation and Functionality. In § 120, 2, we developed
the idea of a function gradually changing in value as the quantity
on which it depends changes. We there illustrated this change
by means of graphs.

We can now throw some additional light on this subject from
our brief study of variation. We see in every one of the formulas
" given, how one quantity is dependent for its value on another
quantity in the formula, and how one changes continuously as
the other changes continuously.

Thus, the quantity of light falling on a page of a book varies
inversely as the square of the distance from the light. As the
book is moved away from the light the quantity of light falling
on the book continuously decreases rapidly.

The lifting force of a simple lever varies directly with the power
and also with the length of the power arm, and inversely with
the length of the weight arm.

The horse power of an engine varies directly as the steam or
gas pressure; it varies also directly as the length of the stroke
of the piston; also directly as the area of the cyhnder, also
directly as the number of strokes per second.

It must be plain to the student from these illustrations that the
range of application of the idea of variation or functionality
is as wide as science itself, whether theoretical or applied. One
branch of higher mathematics, called the calculus, deals largely
with the continuous changes in values of functions.
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III. THE RATIOS OF THE SIDES IN RIGHT TRIANGLES*

149. Similar Triangles. Similar triangles are defined in geom-
etry as those having their corresponding angles equal and their
D corresponding sides proportional.

Now two right triangles are similar
if they have an acute angle of one equal
4 0 B to an acute angle of the other.

Hence, if ABC and ADE are right triangles having the acute

angle 4 common,

B

BC _DE, AC_AE., BC_DE

4B~ 4D’ 4B” 4D’ AC AE
Thus, we see that so long as two right triangles have the same-
sized acute angle A4, no matter how much larger one triangle is
than the other, the ratio of any two sides of one triangle is equal
to the ratio of the corresponding sides of the other triangle.

150. The Ratios of the Sides of a right triangle to one another
are called the trigonometrical functions of its acute angles. These
functions have been given distinctive B
names.

Let 4 be an acute angle of a right-angled
triangle, with the sides and angles marked 4
as in the diagram, a being opposite angle
A, and b opposite angle B. There are six ratios that can be
formed out of the three sides, viz.:

ababdc €. Of the last two, called “secant” (sec) and
a

“cosecant” (cosec), we will make no use.
Calling the others “sine,” “cosine,” “tangent,” ¢cotangent,”
we now write

* The remainder of this chapter can be omitted if desired. Several reasons can
be given for taking it up here if there is time. It deals with practical problems,
some appearing in physics, is a preparation for learning to use the logarithmic
table, and gives a good start in trigonometry. Probably the chief difficulties ex-
perienced by students in its study are algebraic in character.
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__side opposite to 4
hypotenuse

(1) Sine A4 =S; or, sine 4

side adjacent to 4
hypotenuse

(2) Cosine A= 9; or, cosine 4=
c

side opposite to 4
side adjacent to 4

(3) Tangent 4= %’; or, tangent A =

side adjacent to 4
side opposite to A

(4) Cotangent A= f—;; or, cotangent 4=

a. The prefix ¢‘“co’ in cosine and cotangent, means ‘‘ complement,’” so
that ¢t cosine ’* means * complement sine,’’ that is, ‘‘sine of complement.”
Notice that B (which equals 90° — A) is the complement of A. Also that

sine B=2 (sde_opw) = cosine 4 ; and that cosine B =% — sine A.
c hypotenuse c

151. Construction of a Table of Trigonometrical Functions for
every 10° of angle from 0° to 90°.

‘We construct a quadrant of a circle (see diagram) with the lower
left-hand corner of a sheet of squared paper as center and having
a radius of 5 cm. We then divide the quadrant arc, with a pro-

‘
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tractor or compass, into nine equal parts of 10° each, and construct
a straight line from the center through the 30° point of division of
the are, producing it until it meets the two tangent lines AF and
HL. By reading directly from the squared paper, we can tell
the length of all vertical distances, such as BD and AF, and of
all horizontal lines, such as CD and HL, these lines belonging to
the angle of 30° as shown on the diagram. Notice that 4 =
CB=CH=15 cn.
Now by the definitions in § 150 we have

0° =" = 2 B0
SR =80 bem
o_CD_43cm
cos 30 T BC  b5ecm.
e _ AF _ 2.9 em.
tan 30 =0~ Bom. =.58.

In getting cot 80°, to avoid dividing AC, 5 c¢m., by AF, 2.9 em.,
we use triangle CHL, in which angle L = 30°.

The student may now make a diagram like that just given, but
whose radius is 10 cm., and construct lines not merely through
the center and the 30° point, but also through the center and all
the points of division of the arc, extending them until they meet
the two tangents AF and HL (which lines will have to be made
longer than in the diagram given in the book). From this diagram
he may fill out the blank spaces in the following Natural Function
table by getting the corresponding measurements and quotients
for the angles 0°, 10° 20°, etc. Notice that the lines correspond-
ing to BD and AF for 0° are each 0, and that the lines corre-
sponding to HL when the angle is 0° is infinite in length (),
as also the line corresponding to AF when the angle is 90°.
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NaturAL FuncTioN TABLE

ExprLANATION. When 8iv Tax Cor Cos
filling in the values for the
degrees at the left side of 0° 0 0 ® 1.00 90°
thetable,read thefunctions
at the top, but when filling 10° 80°
in the valuesforthe degrees
at the right of the table,
read the functions at the
bottom. It will be found
that 30° .60 .68 1.7 .86 ' 60°
8in 10° = cos80° (§ 150, a),
tan80° = cot 60°, 40° 50°

etc.

20° 70°

Cos Cor TaN BIN

The student may now compare the values he has obtained with
those given in the Table of Natural Functions found on page 164.

a. It is important to note that each of the expressions * sin 4, or *‘ cos
20°,” or the like, denotes one number, and has to be treated as such in making
algebraical transformations. In algebra each letter in ¢‘8in 4’ would denote
& number, and sin 4 would signify their product ; but in trigonometry these
four letters are handled as if they were a single letter.

152. Use of the Table of Functions. If we know the values of
certain “parts” (sides or angles) of any right triangle, we can
find the remaining parts by means of the trigonometrical ratios
to be found in the table, page 164, for all the different sizes of
angles 0°-90°. Examples will make this plain.

153. Exercise in Solving Problems using the Four- g
Place Natural Function Table (page 164).

1. A man walks 121 ft. in the direction 21° west 2 b
. of north. How far west has he gone? How far ?)
north? b .

Sorurron. (1) To find @, the distance directly west.
Wehavesin 4 =% (§150); @ = ¢ x sin 4. (Mult. Ax.)
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TABLE OF NATURAL FUNCTIONS

ANeLE SiNE TANGENT COTANGENT CosiNg
0° 0 0 © 1 90°
1 0175 0178 57.2900 .9998 89
2 .0349 0349 28.6363 9994 88
3 0523 0524 19.0811 .9986 87
4 0698 .0699 14.3006 9976 86
3 0872 0875 11.4301 9962 85
6 1045 .1051 9.5144 9945 81
7 1219 .1228 8.1443 9925 83
8 1392 .1405 7.1154 9903 82
9 1564 1584 6.3138 9877 81
10 1736 1763 5.6713 9848 80
11 .1908 1944 5.1446 9816 79
12 2079 2126 4.7046 9781 78
13 2250 .2309 4.3315 9744 7
14 2419 2493 4.0108 9703 76
15 2588 2679 3.7321 9659 5
16 2756 2867 3.4874 9613 T4
17 2924 3057 3.2709 9563 73
13 .3090 3249 3.0777 9511 72
19 3256 343 2.9042 9455 71
20 3420 .3640 2.7475 9397 70
21 3584 3839 2.6051 9336 69
22 3746 4040 2.4751 9272 68
23 .3907 4245 2.3559 92056 67
24 4067 4452 2.2460 9135 66
25 4226 4663 2.1445 .9063 65
26 4384 4877 2.0503 .8988 64
27 4540 5095 1.9626 .8910 63
28 4695 5317 1.8807 .8829 62
29 4848 5543 1.8040 .8746 61
30 5000 ST 1.7321 .8660 60
31 .5150 6009 1.6643 8572 59
32 5299 6249 1.6003 .8480 58
33 5446 6494 1.5399 .8387 57
34 5592 6745 1.4826 .8290 56
35 5736 7002 1.4281 8192 55
36 5878 7265 1.3764 .8090 54
37 6018 75306 1.3270 7986 53
38 6157 7813 1.279%) 7880 52
39 6293 .8098 1.2349 771 51
40 6428 8391 1.1918 .7660 50
41 6661 .8693 1.1504 1547 49
42 6691 9004 1.11068 1431 48
43 6820 9325 1.0724 7314 47
4 6947 9657 1.0355 7193 46
45 7071 1.0000 1.0000 7071 45
CosINE COTANGENT TaxgeNT SmvE ANGLE
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Turning to the Table on opposite pagc, for the value of sin 4, and substi-
tuting it in the last equation, we get

B _a
a=121 x .8584 = 43.87- ft. Ans.
() Tofind B. B=90°— 4=90°—21° = 60°, \
(8) To find b, the distance directly north. We have ﬁé b
sin B =§ (§150). Hence, b=c x sin B. (Mult. Ax.) i\

Then referring to the table for the value of sin 69° (and re-
membering that when the angle is over 45°, the function name
must be read at the bottom of the page), we get 4

b =121 x 9336 = 112.97- ft. Ans.

2. Given 4 =32°% ¢ = 259 yd., to find a, B, and b.
3. Given A =42° ¢ = 12.4 nii,, to find @, B, and b.
4, Given A =73° ¢ = 2542 m,, to find a, B, and b.

5. Given the lengths of two sides of a rectangular block as
425 ft. and 524 ft. 10 in., to find the two angles this diagonal makes
B with the sides, and the length of the diago-
nal from one corner to the opposite one.
SovurioN.— (1) To find A, the angle between

® the diagonal and a side. We have
P 3 _a_ 588 _ o
1 tan A 3= 435 234

Turning to the Table, we find if
tan A =1.2349 that 4 =51°. Ans.

i (2) Tofind B. B=90°—51°=89°

A b=1425 (8) To find the diagonal c.
sin A =%. Hence, ¢ x sin A =a, and ¢ = —%—, (Axs.?)
¢ sin 4

Substituting the value of sin A4 found in the t.abie, we have

c=52483 _6r54 5. Ans.
71

a. This answer can be checked by geometry, using the formula c3=a3 3.
Notice that ¢ can be found with less work by trigonometry than by geometry.

6. Given a = 36.506, b = 82, to find 4, B, and c.
Find the remaining parts with the following conditions given.
7. a=40.394, b = 190.
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8. a=90.9, b =225.
9. a=63.028, b = 70.

10. Given one side 18 ft. of a regular octagon (eight-sided equi-
lateral and equiangular polygon), to find the perpendicular dis-
tance from its center to one side, and the distance from center

to a vertex.

SorurioN. In the figure, C is the center of the poly-
gon, EB is one side, and CD is the perpendicular from
the center on the side. Then DCB is a right triangle
in which we will regard £ DCB as angle 4 of our
formula, DB as side a, CD as side b, and CB as side c.
Then, 4 =4 of 860° or 22}° and the opposite side
a =9 ft,

E D (1) To find b. We have,

tan 4 = _.5 ; therefore b x tan 4 = a, whence b = t.ar?A=:%43 =21.72.

ExpLaNATION., The .4143, which is the tangent of 22}°, is found by
¢ interpolating.”” From the table,
tan 22° = ,4040, tan 28° = .4245;
tan 22}° = .4040 + § (.4245 — .4040) = 4148 (to nearest .0001).

' (2) To find ¢. We write

sind=%; .o=_9 —_—
¢’ T gna (AxeD)=Tggm

11. Given A =b52}°, a =35 inches, to find b, ¢, and B.

c

= 28.62.

Find the remaining ‘pa.rts in the following three problems,
as in Ex. 10.

12. =331, a=25. 13. B=39", a=T2. 14. A= 48;} b=17.6.

15. A house 29 ft. wide has a roof which measures 18 ft. from
the ridge to either side of the house. Find the angle the roof
makes with the horizontal, and the
height of the ridge above the top 7
story. ° o

b_14.6 b=14.5
SoruTIO! 1) Cos 4 =-=-=—"=8066.
L N. (1) Cos =18 .

Now, .8056 lies between cos 36° = .8090 and cos 87° = .7986. The differ-
ence for 1° is 104, and the difference between 8090 and 8056 is 84. Hence,
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the number of minutes of angle to be added to 36° is ##4 of 60, or 20'-,
Therefore A =36° 20'-, Ans.
[0)) sinA:%; .a=cxsin A=18 x .5925 = 10.67 ft. Ans.
ExpranaTioN. To find the sine of 36° 20', one gets sin 36° and adds to it
48 of the (tabular) difference between sin 36° and sin 37°,

ImporTANT NoOTE. The student should see that while the sine and
tangent increase as the angle increases, though not in proportion to the in-
crease in the angle, the cosine and cotangent decrease as the angle increases.

Thus,
sin 0°
8in 30
sin 60° = .8660 tan 60° = 1.7321 cos 60°
8in 90° = 1.0000  tan 80° = 5.6713 cos 80°

- 1763 cos 20°
5774 cos 40°

9897 cot 20° = 2.7476
.7660 cot 40° = 1.1918
.5000 cot 60° = .5774
.1736 cot 80° = .1763

.0000 tan 10°
.6000 tan 30°

L
o

154. Rule for finding a Function from its Angle in the Natural
Table, p. 164.

Look first for the function corresponding to the given number of
degrees. Then, if there are minutes, get the “tabular difference” by
subtracting the number found from that for the next higher number
of degrees, and multiply this difference by the fraction of a degree
denoted by the given number of minutes. If the function is a sine or
a tangent, add the product to the first number found in the table; but
if it i3 a cosine or a cotangent, subtract it from that number.

155. Rule for finding an Angle containing Minutes from its Func-
tion in the Natural Table.

First find the numbers tn the table between which the given func-
tion lies, and subtract the less from the greater for the *tabular dif-
JSerence” for the corresponding interval. If the function is a sine or
a tangent, subtract the smaller of the two numbers in the table from the
given value of the function and take such a part of 60' as the differ-
ence found 8 of the tabular difference, and add this number of
minutes to the number of degrees corresponding to the lesser tabular
number; but if the function 18 a cosine or a cotangent, subtract the
given value of the function from the larger tabular number and take
such a part of 60' as the difference found i3 of the tabular difference,

COLLINS'S AV, ALG., — 12
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and add this number of minutes to the number of degrees corre-
sponding to the larger of the two tabular numbers.

156. Rule for solving Right Triangles for Unknown Parts. In
every problem two parts will always be given to find the remain-
ing three. Of these, one, an acute angle, is always found by sub-
tracting the other acute angle from 90°. To find the remaining
parts two formulas will be needed.

To provide the formula for any given case, select that one of the
Jormulas, (1), (2), (3), § 150, which contains the two given parts and
the one that is to be found, and solve by algebra for the unknown
quantity.

157. Exercise in solving for Unknown Parts in Right Triangles.
Find the remaining parts in the following nine probleins:

1. A=25°40', b=84. 2. A=25°35', ¢=25.6.
3. b=T73,¢c=99. 4. b=1291, c=1674.

6. a=43.1, ¢c=56.19. 8. a=29.7, B="73° 23"
7. B=24° 54, a="T8.44. 8. a=192.5, b=173.8.
9. a=19.65, b=27.84. 10. B=17°18" ¢ = 84.7T.

11. How high is a tower that casts a shadow 75 ft. in length,
when the “angle of elevation ” of the sun is 52° 35'?
SuceEsTION. A =162°85/, b="75; to find a.

12. A flagstaff 90 ft. high casts a shadow
117 ft. long. Find the “altitude” of the sun,
that is, the angle the line from the sun through
the top of the staff makes with a horizontal line
where it meets the ground. The altitude angle
corresponds to angle of elevation 4 in the
preceding exercise.

13. A distance BC is measured 124 ft.
along the bank of a river from a point C
opposite a tree at 4 on the other bank
(ACB =right angle), and angle B is 4
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measured and found to be 52° 24'. What does AC, the distance
across the river, equal ?

14. One side of a regular heptagon (seven-sided polygon) is
17 in. Find first the perpendicular on a side, and then the area
of the heptagon. (See Ex. 10, § 153.)

15. The top of a lighthouse is 200 ft. above sea level, and the
angle of depression to a buoy is 9° 53'. Find the horizontal dis-
tance of the buoy from the T
lighthouse. E raR

16. The angle E at the 800,000 \9
earth’s center subtended by the sun’s radius is approximately 16/,
. and the sun’s distance is 92,800,000 mi. Find the sun’s radius
in miles.

17. What must be the length of a ladder set at an angle of 71°
14' with the ground to reach a window 22 ft. high?

18. The base of an isosceles triangle is15 in., and the angle at
the vertex is 46}°. Find altitude of triangle.

19. The chord of a circle is 25 meters long, and the angle at
the center subtended by it is 40° 15'. Find radius of circle.

20. Find radius of small circle in latitude 30° if it equals
3963 mi. x cos 30°. (See figure in § 151.)

21. Two forces act at 4 (figurein Ex. 5, § 153), the horizontal one
b with force of 15 1b. and vertical one a with force of 19 1b. Find
resultant force ¢ and angle it makes with horizontal.

22. A river 1 mi. wide flows at the rate of 4 mi. an hour. A
steam ferryboat with a speed of 8 mi. an hour has to run directly
across. In what direction must she steer, and what time will she
be in crossing ?

28. The perimeter of a right triangle is 6.37 ft. and one of its
acute angles is 33° 24'. Find the three sides.

Nore. Any oblique triangle can be solved, if three parts are given, by
properly drawing a perpendicular dividing it into two right triangles, and
solving both triangles by the method of this chapter. See Crockett’s Ele-
ments of Plane Trigonometry, pp. 107-110.



CHAPTER VIII

LOGARITHMS

I. NATURE OF LOGARITHMS

158. Calculations made through Use of Exponents. Whenever
numbers which are the powers of one number, as, for instance, of
2, are to be multiplied, divided, raised to powers, or have their
roots extracted, these operations can be performed very quickly,
if a table containing its various powers has been prepared.

TABLE
NuMBER Pg:v;n
2 2
4 22
8 23
16 2¢
32 26
64 20
128 27
266 28
512 29
1,024 210
2,048 [ 2ou
4,096 212
8,192 218
16,384 214
32,768 216
65,636 218

1. Calculate 16 x 64 by use of the table.

SoLuTiON. 16 =24, (From the table.)
64 = 28, (From the table.)

.*. 16 x 64 = 24 x 28 = 210, (Law of exponents.)
But 210 = 1024. (From the table.)

.. 16 x 64 =1024. Ans.
2. Calculate 8 x 128 x 16 by using the table.
3. Calculate 16,384 + 256 with table.

SoruTroN. 16384 = 24, (From the table.)
260 = 28. (From the table.)
.. 16384 +266 = 214 + 28 = 26 =64. (From the table.)

64 x 256 x 16 . 8192 x 512 x 65536
32 x 512 4096 x 4 x 32768
Square 32 by use of table; also 256.
Extract square root of 16,384 ; of 4096.
Extract cube root.of 32,768; of 4096.

Extract 4th root of 4096.
170

© ® e
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a. The examples just given show that calculations involving only numbers
which are powers of 2 can be made very easily and expeditiously. Now, we
can express all numbers as powers of 2 by the simple device of using frac-
tional exponents. By calculations it is found that 15 = 239; 144 = 2717,
Similar expressions can be found for any number. Thus, we see how a table
could be made with 2 for base which could be used to make calculations with
any numbers. Moreover, some other number, as 8, could be used instead of
2 as the base in the table, all numbers being represented as powers of 8. As
we shall see later, the number 10 is the base used in most tables of this kind.

159. Legarithms are Exponents. In 32 =9, we can say 2 is the
logarithm of 9 to base 3. Similarly, since 3*=281, 4 is the loga-
rithm of 81 to base 3. In logarithms three different numbers are
always involved: (1) A number. (2) Its logarithm. (3) The
base used.

The logarithm of a given number is the exponent of the power to
which a base must be raised to produce this number.

A system of logarithms is a set of numbers with their loga-
rithms all taken to the same base. Notice that the logarithm of
1 in any system is 0, since a®=1 (§ 69).

SYsTEM OF LOGARITHMS WITH BAse 2

NuMBER | LOGARITHM Reasox NumBer | LOGARITHM REASON
1 (1] 20=1
2 1 2 =2 3 -1 2-1 =
8 1.5860 21:680 — 3 } —1.5850 2-1.8860= }
4 2 2 =4 1 -2 2t =
5 2.3228 2388 — § 3 —2.3223 | 2288
8 3 2 =38 3 -3 28 =}
etec. | ete. etc. etc. ete. ete.

The student is not supposed to know how the decimal loga-
rithms, like 1.5850, are found. Originally they were obtained by
a long process of extracting roots. (See the article « Logarithms ”’
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in the Encyclopadia Britannica.) Since logarithms are exponents,
they may be interpreted as such. Thus, in the equation 2ths88 —
3, we see that the 15850th power of the 10000 root of 2 equals 3,
and if these operations were actually performed on 2, the result
would be 3. ‘

160. Notation and Terms. To avoid writing long exponents,
such an equation as 2'%%® =3 is changed into log; 3 =1.5850, and
is read “logarithm of 3 to base 2 equals 1.5850.” The subscript
indicating the base is usually omitted when 10 is the base.

The integral part of a logarithm is called its characteristic, and
the decimal part its mantissa. Thus, in 1.5850, which is the loga~
rithm of 3 to base 2, the 1 is the characteristic and the .5850
is the mantissa of the logarithm.

Express the following in the language of logarithms:

1. 2¢=16.

SoLuTiON. logz 16 =4. Read ‘the logarithm of 16 to base 2 is 4."

2. $=27. 3. 10°=1000. 4. 4'=16. 5. 2°=32,
6. 3=} 7. 10°=100. 8 10=4;. 9. 10-*=.0001.

Express the following equations, using the language of ex-
ponents:

10. log, 8=3. 11. log,64 =3. 12. logs25=2.
13. logs4=14%. 14. logy,y .01 =-2. 15. log, 27 =3}-

16. What is the logarithm of 9 in a system whose base s 3?
Of81? O0f27? Of3? Of }? Of A?

17. What is the logarithm of 256 in a system whose base is 16 ?
Of 16? 0Of4? Of8? Of 64?

18. What is the logarithm of 100 in a system whose base s 10?
0£1000? Of 1000007 Of &? Of.01? Of1? Of.001?

19. What is the logarithm of 81 in a system whose base is 27?
0f3? 0f9? Of243? Of A ? Of }? Of ?
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161. The Briggsian or Common System of Logarithms uses 10 for
its base.

1. Since 10* =10,000, then, log 10,000 = 4 (§160).
10* = 1,000, then, log 1,000 = 3.

10* = 100, then, log 100= 2
10! = 10, then, log 10= 1
10° = 1(§ 69), log 1= 0.
10°=1 (§ 69), log .1 =-1
10-2 = .01 log. 01 =-2.
10-3 =.001 log.001 =-3.
ete. ete.

2. It is clear from the first two lines of 1 that any number
between 1000 and 10,000 (as 6924.7), baving four figures to the
left of the decimal point, has for its logarithm 3 4 a decimal,
because its logarithm must lie between 3 and 4. Again, any num-
ber between 100 and 1000, having three figures to the left of the
decimal point, has for its logarithm 2 4 a decimal, because its
logarithm must lie between 2 and 3; and any number between 10
and 100, having two integral orders, has for its logarithm 1 + a
decimal, ‘because its logarithm must lie between 1 and 2; and
finally, any number between 1 and 10, as 5.698, having but one
integral order, has for its logarithm 0 + a decimal, because its
logarithm must lie between 0 and 1. Hence, generally

3. The characteristic of the logarithm of any number greater than
1 is one less than the number of its integral orders.

Thus, the characteristic of the logarithm of 729.4 is 2; of
7460 is 3; of 3.96 is 0.

4. In the common system, in which the base is 10, the mantissas
do not change when the decimal point is moved,
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To understand why this is so, take 10'™=1.27. Multiplying
or dividing the members of this equation by 10*=100, or 10 =10,
etc., we have, by the laws of exponents, § 17:

10218 =127 (Mult. Ax)), or,log127 = =2.1038.
10098 = 12,7  (Mult. Ax.), or,log 127 =1.1038.
1011 — 127 (Div. Ax), or,log 127 =1.1038.

107 = 0127 (Div. Ax.), or,log .0127=2.1038.
ete. ete.

The minus signs over the characteristics at the right belong to
the characteristics only. Thus, by regarding the characteristics
only as changing signs, mantissas stay the same no matter where
the decimal point in the number is changed to, and mantissas are”
always positive. '

5. By examining the last two lines of the table in 1 of this
article we see that any nuinber between .001 and .01, having 2
ciphers before its first significant figures, has — 3 for character-
istic, since its logarithm lies between —3 and — 2 and the man-
tissa added is positive. Again, any number between .01 and .1,
having one cipher before its first significant figure, has — 2 for
its characteristic, since its logarithm lies between —2 and —1
and the mantissa added is positive; also, any number between
.1 and 1, having no cipher before its first significant figure, has —1
for characteristic, since its logarithm lies between —1 and 0 and
the mantissa added is positive. Hence, generally (see 3, p. 173)

6. The characteristic of the logarithm of any number equals the
number of places from unity to the highest order filled by a signifi-
cant figure, positive if to left, negative if to right.

Thus, the characteristic of the logarithm of .00468 is —3; of
3794 is —1; of .000067 is —5; of 867 is 2; of 6 is 0; ete.

162. Explanaﬁon of the Four Place Legarithmic Table. The
Table (see pp. 176, 177) gives the mantissa only of all the num-
bers from 100 to 999. The first two figures of the numbers are
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found in the column marked “ N ”; the third is one of the ten fig-
ures at the top of the table. Thus, the mantissa of 487 is found
by taking the 48 in the “ N ” column and the 7 from the topmost
row of figures; the mantissa sought is in the 7 column opposite
48 and is .6875. The characteristic of 487 is 2 (§ 161, 8), so that
log 487 = 2.6875.

At the intersection of lines and columns are found the 900
mantissas corresponding to the 900 numbers from 100 to 999, the
first two figures determining the line and the last the column,
A decimal point before each mantissa is understood.

‘The columns of numbers marked “ D ” are merely the differences
between the mantissas. Thus, the difference between .3032 and
3054 is 22 as in the table; and between .4133 (corresponding to
259) and .4150 (corresponding to 260) is 17.

This table gives directly the mantissas of all numbers consist-
ing of three figures, preceded or followed by any number of
ciphers. Thus, the mantissa of 31 is the same as that for 310,
and is .4914 (see § 161, 4); the mantissa of the logarithm of 8 is
the same as that for 800; the mantissa for 320000 or for .032 is
the same as that for 320.

163. Exercise in finding the Logarithms of Numbers whose Man-
tissas are given directly in the Tablez. Common fractions and
mixed numbers must be reduced to decimals. '

Find the logarithms of :

1. 329. Ans. 2.5172. See § 161, 8 and § 162.

2. 764. 3. 125. 4. 969. 5. 370. 8. 37.

7. 400. 8. 40. 9. 4. 10. 7. 11. 70.

12. 700. 13. 7000. 14. .0372. 15. .000561. 16. .000029.
17. .002. 18. 3680. 19. 1. 20. . 21. 4}.

22. 474, 23. 12§. 24. .06} 25. .003}.  26. }
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N/ Ov/l1|p2|p 83|pf4|v|] 5|p/ B8|p 7o 8 |p|] ©

1.0/0000|48/004343/0086 |42/0128|42{0170|42]0212|41|0253| 410294400334 |40{0874
11 |0414(89/045339(0492(39/0531|38|0569|38|0607 |38|0646(37(0682 /37|07 1936|0765
12 |0792(36/082836/0864 35|0899(35/0934 |35/0969351004 34/ 108834 1072|34|1106
13 |1139(34|1173(33(1206|s3|1239|32|1271{32{1303 (82| 1335 |52/ 1367 |32{1399|31/1430
14 |1461[31/1492(s1|1523|30|1663[s1|1 584 30{1614{30|1644 |20|1673|80|1703|28/1732

15 |1761{20(1790|28|1818|29/1847|28/1875|28{1903|28|1931 |28| 195928/ 1987 |27/2014
16 {2041|27/2068|27(2095(27(2122(26|2148|27|2175|26(2201 |26|2227 [26|2253|26(2279
17 |2804|26/2330|25|2366|25|2380)25|2406|25|2480|25| 2455 |25(2480|24| 2504 |25|2529
18 |2553|24/2677(24{2601 |24|2625]23|2648 24|26 72 |23|26056|23[2718|24|2742|28|2765
19 |2788|22|2810|23|2833|23|28506|22|2878|22|2900 |23|2023|22(2945|22|296 7 |22|2989

20 {3010|223082|22|30564(21/3075(21{3096|22|3118(21{3139|21|3160|21/3181|20{3201
21 {3222(21(3243|20|3263(21{8284 |20{3304 |20{3824 [21{3346|20|3365|20|33856|10/3404
22 |3424/203444|20|3464|19|3483/10(3502(20{352219{3541|19{3560)19/3579|19/36598,
23 |3617(19(3636|10/36566/19|3674/18/3692(19]3711 (183729188747 |10{3766|18|3784
24 |3802|18/3820|18(3838|18|385618{387418|3892|17|3909|18/3927|18{8945|17/3962

25 (3979153997 17/4014/17/4031|17/4048|17|4065|17|4082(17/4099(17|/4116|17|4133
26 [4160(16/4166(17|4183(17(4200|16/4216|16|4232(17(424916|4265|16|4281 17|4298
27 |4314/16{4330|16|4346/16(4362|16/4378|15|4393|16/4409|16{4425|15|4440|16/4456
28 (4472(15/448715(4502|16{4518(15(4533|15|4548|16|4564|15|14579|15|459415|4609
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164. How to find Mantissas for Numbers not given in the Table.

1. Since changing the position of the decimal point in a num-
ber does not affect the value of the mantissa of its logarithm, to
find the mantissas of numbers consisting of more than three sig-
nificant figures, we may think of the decimal point as located so
that we have a number consisting of three integral orders. Thus,
if the given number is 46,792 we may think of it as changed to
467.92; if it is .006943, we may think of it as changed to 694.3.

2. Logarithms do not increase in proportion as their numbers
increase.
Thus, log 3=.4771; log 6 =.7782; log 12 =1.0792.

However, if we take large numbers close together, the incre-
ments of the numbers and the increments of their logarithms are
very nearly proportional.

Thus, log 720 =2.8573; log 721=2.8579; log 722=2.8585;
log 723 = 2.8591.

Now, since log 721 is midway between log 720 and log 722 cor-
rect to 4 decimal places, we conclude that log 720.5 is probably
about midway between log 720 and log 721, that is,

log 720.5 = 2.8573 4+ .5 of .0006 = 2.8576.

Reasoning in the same way, we infer that .
log 720.85 = 2.8573 +4- .85 of .0006 = 2.8578.

Now, as the mantissas themselves are written as whole num-
bers and their differences are given as whole numbers, it is not
necessary to write .0006, but merely 6, multiplying it by the deci-
mal part of the given number. Then, taking the result to the
nearest unit, we add it to the next lower mantissa in the table.

8. To find the mantissa of the logarithm of any number pro-
ceed as follows: '

(1) Find the mantissa corresponding to the first three figures of
which the left one is significant, that <s, is not 0.
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(2) Multiply the tabular difference (column D, following the man-
tissa found) by the remaining figures of the number regarded as a
decimal. '

' (8) Add the product, taken to the nearest unit, to the mantissa cor-
responding to the first three figures.

This process is called interpolation.

165. Exercise in finding the Logarithms of Numbers.

1. Find the logarithm of 67.883.

SorurioN. log 67.8 =1.8312; .83 of 7 = 5.81 =6 to the nearest unit;
log 67.883 = 1.8318. i

As soon as possible the whole operation ought to be performed
mentally. - Find the logarithms of the following:

2. 8438. 3. 921.5. 4. 6.934. 5. 29045 6. 1764,
7. 1764 8. 02596, 9. .20087. 10. 006784 11. .0000B.
12. 76349. 13. 11f. 14. §. 15. 14y 16. 3.1416.
17. 10007. 18. 12401 19. 1.002.  20. .1}. 21. 2006.
166. How to find the Numbers corresponding to given Logarithms.

Exercise. Numbers corresponding to given logarithms are often
called the antilogarithms of the given logarithms.

1. Find antilog of 1.8142.

SorLuTioN. The mantissa .8142 corresponds to 652. By the rule for char-
acteristics, § 161, 8, there should be 2 integral orders in the answer. Hence,
the answer is 65.2.

Find the antilogarithms of the following:
2. 2.6580 3. 2.7388 4. 0.1959
5. Find the antilogarithm of 1.7963.

The process is the exact reverse of that of finding logarithms
of numbers.
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(1) Look for that mantissa in the table which is next smaller than
the given mantissa (in this case .T959, which corresponds to 625),
and subtract this mantissa from the given one.

(2) Neaxt divide this remainder by the tabular difference (7) follow-
tng the mantissa found in the table, getting .57, and annex the quo-
tient to the first three figures already found, getting 62557.

(3) Last of all locate the decimal point by the rules for charac-
teristic (§ 161, 8, 6). Since the given characteristic is 1, there must
be two integral orders in the answer, i.e. answer is 62.657,

6. Find the antilogarithm of 3.2432,
SoLUTION. 2432 — 2430 =2; 2 + 26 = .08. A4ns. .0017508.

7. 2.8144. 8. 5.7329. 9. 2.5394. 10, 6.3139.
11. 2.4774. 12. 3.6121. 13. 6.1920. 14. 1.0100.
15. 0.0304. 16. 5.002;. 17. 6.9779. 18. 0.9988.
19. 8.2463—10. This form is often used instead of 2.2463.

20. 9.3891 — 10. 21. 7.4284—10. 22. 6.3239 —10.

II. USES OF LOGARITHMS

167. Theory of Logarithms. As logarithms are exponents, they
are governed by exactly the same laws as exponents. (§ 63,
§ 71.) ‘

1. Addition and subtraction cannot be performed by common
logarithms. Thus, a® and &® cannot be added or subtracted by
working with 2 and 3. ‘

2. Multiplication is performed by adding logarithms. (§ 17.)
Exampre. To multiply 721 by 369.

SoruTioN, log 721 = 2.8579 ExpPLANATION. 721 = 1038M
log 369 == 2.5670 X 869 = x 1028670
log 266000 = 5.4249 721 x 869 = 1054349

Ans. (Antilog of 5.4249.)
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ExpLANATION, The logarithms of 721 and 869 are obtained from the table
and added ; then the antilogarithm of the sum is found.

By actual multiplication 721 x 869 = 266,049.

a. We see here that a Four Place Table gives only four figures of the
answer correct. Occasionally it will give only tlree correct, but usually it
will give four and often five right. Logarithmic tables are constructed for
varying needs. For practical purposes Four and Five Place Tables are com-
monly employed. Results can be had as accurate as desired by using proper
kind of tables. Tables have been constructed containing as many as 16
figures in their logarithms. The theory, of course, is the same for all tables,

8. To multiply numbers together, get the logarithm of each factor,
add the results, and find the antilogarithm of the sum.

4. Multiply 763 by 298 and check by actual multiplication.
Also 3.245 and 63.29; also 93.29, 29.76, and 16.48.

6. Division is performed by subtracting logarithms. (§ 71, 3.)

Exampre. Divide 37.69 by 2.463.

Sovurion. log 87.69 = 1.5762 ExpPLANATION, 37.69 = 1015762
log 2.463 = 0.3914 2.463 = 103914
log 16.304~ = 1.1848 37.69 + 2.463 = 1011848
Ans. (Antilog of 1.1848.)
By actual division the quotient is 15.302+.

6. Divide 19.65 by 2.843.and check by actual division; also
25,941 by 16,713 ; 34.62 by 7.329; 84.63 by .6792; .6721 by .00325.

7. Raising a number to a power is performed by multiplying
its logarithm by the exponent of the power and finding the
antilogarithm of the product. (§ 71, 4.)

ExamprLe. Raise 17.64 to the fourth power.

SoLuTiON. log 17.64 =1.2460  EXPLANATION. 17.64 = 101246

log 17.644 = 4.9860 17.644 = 1049800
log 96825 = 4.9860 06825 = 104980
Ans.

By actual contracted multiplication 17.644 = 96,827-.
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8. Raise 13.25 to 3d power and check by contracted multi-
plication; also 9.2 to 4th power; 3% .17%; 16'2; .06

9. Extracting a root of a number is performed by dividing
its logarithm by the index of the root and finding the antilog-
arithm of quotient. (§ 71, 5.)

Exampre. Caleulate (29.34)}, or v/29.34.

Sorution. log 29.834 = 1.4676 EXPLANATION. 20.34 — 101467
log 29.34% = 0.2035 20.35% = 1028
log 1.965656 = 0.2986 1.9656 = 10-2985

By actual contracted multiplication 1.985565 = 29.315.

10. Extract the cube root of 1763 and check by the method of
§ 61; ~/1.953 (check by § 59); +/19.84; ~/85.34 (check by § 61).
11. Cases 7 and 9 just given can be included under one head.

Examere. (29382)%.
SoruTioN. log 29382 = 4.4680 ; log 29882% =4 X 4.4680 = 8.5744 = anti-

log 8768. Ans. .- (20382)% = 3753,
12. Calculate 41.6%; 1.908%; 3984%; 1501%; 20.6%.

168. Exercise in Multiplication and Division by Logarithms.
Check by contracted multiplication and division.

1. 26.73 x 19.38. 2. 26.45 x .02687 x 3.194. 3. .00857 x .00693.

" 862 x 48.75 SuveaestioN. Get logarithms of factérs in numerator

. m and add ; also logarithms of factors in denominator and

: ) add ; subtract latter sum from the former and get anti-
logarithm of difference.

89.76 x 98.54 x 26.63 87.51 x 445 x 823 .
005862 x 8271 " 3.1416 x .045 x .862
a. Carrying and borrowing where negative characteristics enter are likely
to prove confusing to the student. It is generally simpler to add 10 to the
characteristic and subtract 10 from the mantissa. Explain the following :
1 £ (@) 26780 © (8 82681
- 42,9746 —4.8541 — 2.7492
1.3166 5.8248 2.56189

6.
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Solve these exercises now by adding and subtracting 10 for each loganthm
with a negative characteristic.

169. Powers.and Roots by Logarithms. The case of negative
exponents needs attention.

1. Raise .0734 to the fourth power.

SoLuTION. log .07844 = (8.8657 — 10) x 4 = 85.4628 — 40="5.4628.
0734‘ .000029.

2. .0634° 3. 6374 4. .007234". 5. .07%

6. Extract the fifth root of .0329.
log .0329 = 8.5172 — 10 = 48.56172 — 60.
5|48.5172 — 50
Antilog of 9.7034 — 10 = .5051. Ans.
Notice that — 50 was chosen so as to be exactly divisible by 5.

7. .0072% 8. .028523, 9. V. 6782. 10. ~/8761.

170. Cologarithms. The remainder obtained by subtracting a
logarithm from 10 is called the cologarithm of the number. By
means of cologarithms combined multiplications and divisions
can be changed into multiplications. Thus, a X b+ ¢ can be

written @ X b X 1, Nowlog1=log1—logc=0—-log ¢. Instead
¢ c '

of subtracting log ¢ from 0, it is more convenient to subtract it
from 10; then 10 will have to be taken from the final result for
each cologarithm introduced. The preceding may be stated as
follows : b

1og‘—’c- =loga + log b + (10 — log c) — 10.
. 1 Calculate fg gi ;: ﬁ 21 , using cologarithms.
SovruTION. log 86.74 = 1.5651 colog 19.88 colog 21.34
log 78.91 = 1.8972 10.0000 10.0000
colog 19.83 = 8.7026 1.2974 1.3292
colog 21.84 = 8.6708 8.7020 8.4708
log6.856 = 0.8367 .. 6.86 is answer sought.

COLLINS’S ADV. ALG. — 138
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2743 x 168.4

) 176.4 x 18.25
1.938 x 247.6

. Calcul )
2. Calculate 31416 x14.3°

3. Calculate

171. Exercise in applying Logarithms in the Solution of Practical
Problems. .

1. Find the circumference of a circle whose diameter is 17.63
inches, from the formula ¢ = »d.

SueeesTION. The logarithm of » is .4971. The student should remember
this, as it will save him the trouble of looking it up each tim ..

2. Find the area of a circle whose radius is 16.72 ft., from the
formula a = =

8. Find the diameter of a circle whose circumference is 3928 m.

4. Find the surface of a sphere whose radius is 362.5 in., from
the formula 8 =4 =*.

5. Find the volume of a sphere whose diameter is 12 cm., from
the formula v =} nd®

6. Find the radius of a sphere whose surface is 25.12 sq. ft.

7. Find the area of an ellipse whose longer semiaxis a is
22.18 in. and shorter b is 16.88 in., from the formula 4 = wab.

8. Find the volume of a cylinder whose radius of base r is
1.677 m. and whose length 7 is 23.51 m., from the formula v = =r7%.

9. Find the volume of a cone whose radius of base r is 33.41 ft.
and altitude a is 12.16 ft., from the formula v = } =%a.

10. Find area of a triangle whose sides are 16.35, 18.97, and

24.77, using formula § 16, 24.

11. Perform the multiplications and divisions called for in
§ 153 with logarithms.

The problems of §§ 153-157 can be solved by logarithms. For
this purpose special tables are constructed which contain the
logarithms of the trigonometrical functions for every degree and
minute from 0° to 90°. Thus, this table contains the logarithms
of the numbers in the table on page 164. By the use of such a
table with an ordinary table of logarithms, problems in right tri-
angles can be solved very quickly.



USES OF LOGARITHMS 185

172. Compound Interest and its Calculation by Logarithms, — In
compound interest the amount becomes the principal at the begin-
ning of each new interest period. Call p the principal, a the final
amount,  the rate, and n the number of years.

1. To find the amount when the principal, rate, and time are given.

The amount at the end of one year is p + pr, or p (1 4 r), since
p is the principal and pr is one year’s interest. Thus, to get the
amount at the end of one year always multiply the principal by
1 + the rate.

Now, in compound interest the principal at the beginning of
the second year is p(1+7). Then the amount at the end of the
second year is p(1+4r)(147), or p(1+47)*; and so on for the n
years. Hence a=p1 41"

ExamprLe. Find the amount of $725.16 at 5% compound
interest at the end of 6 years.
SoLurioN. @ = 726.16(1 + .06)8.
log 1.06 = .0212
log 1.06% = .1272
log 726.16 = 2.8604
log @ = 2.9876
a =971.80. Ans.

a. A gix- or seven-place table is needed if the answer is to be obtained
correct to cents.

2. To find the cost or “ present worth” of a sum payable n years
hence, supposing interest to be compounded.

From the equation just obtained by solving for p, we get

=% .
Py
Exaupre. Find the principal which will amount to $928 at 49 com-
pound interest in 12 years, by substituting in the formula.
8. To find amount when interest 18 compounded q times a year.
Explain derivation of formula that follows.

a =p(1 + 5)0".
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173. Exercise in solving Compound Interest Problems.

C OIS

Find amount of $ 933 at 5 ¢, which ran 7 yr.
Find amount of $336.1 at 6%, which ran 14 yr.
Find amount of $182.70 at 4} 9% running 11 yr.
Find amount of $2673 at 3 % running 22 yr.
Find amount of $193.60 at 6 % running 8 yr.
6. Find principal which amounts to $775.20 i
15 yr. at 5. :
7. Find principal which amounts to $9675 in
20 yr. at 4 9.
8. Find cost or present worth of $918 to be paid
in 10 yr., allowing 5%, interest.
9. Find the amount of $225 at 5% running
75 yr.
" 10. Find the amount of $ 700 which ran for 12
years, the interest being compounded semiannually
at 6 %.

SUGGESTION. @ = p(1 _,_g)’". See § 172, 3,

11. Find amount of $425 compounded quarterly
at 7 9, which ran 9 years.

12. Find what is due in 1911 on a note calling for
1¢ as principal made in the time of Julius Ceesar 50
years before Christ, if 4% compound interest is
allowed.

174. Slide Rule. Rules are in common use which
have for the figures given on them the left column of
the logarithmic table, but instead of the mantissas
being denoted by figures, these mantissas are given
by their lengths. In using these rules one is virtually
using a table of logarithms. See drawing in the

margin.
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III. EXPONENTIAL EQUATIONS

175. Solution of Exponential Equations. An exponential equation
is one in which the unknown quantity is an exponent. Thus,
20° =75 is an exponential equation. Such equations are solved
by means of logarithms.

Let a® = b represent a simple exponential equation.

Then, log a® =log b, (Logarithms of equals are equal.)

or, z X loga=1logb. (The logarithm of a power equals loga-
rithm of the quantity multiplied by the
exponent of the power, § 167, 7.)

R - L) (Div. Ax.)

loga
1. Solve 8” =45 for x.
SoLuTION. x=10845 16532 ,qqy
log8 .9031

Solve the following equations:
2. 3*=29. 3. 10" =129. 4. 17 =1174,
5. 123* =1684. 6. 2*=25. 7. 100*=8.

a. The formula calls for getting the logarithms of @ and b out of the table
and dividing the latter by the former. This division can be performed by
logarithms, but it is better to execute this division by the old familiar process
of long division at first, and until the formula is well fixed in mind. The
student may now test his divisions in the preceding problems by a logarithmic
solution, and hereafter perform the divisions by logarithms.

8. 15.49* =6. 9. 127Y =4675. 10. 3*=T729.

b. Exponential equations can have any positive value except unity for ¢
and b. We have avoided the use of negative characteristics in the preceding
problems, since they must be handled with care.

__9.6990—10 _ —.3010 —— o=
11. 12*=.5. SoLuTiON. %= 107 = 1otoe = .28-,

12. 15° = 42, 13. 9*=2b. 14. .85"=.687.

15. 1042 x 10° =80, 16. 2'+%=5.
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176. Historical Notes. Logarithms were invented by John
Napier, of Merchiston, Scotland, about 1614 o.p. Napier’s loga-
rithms were not logarithms of ordinary numbers but of the ratios
of the legs of a right-angled triangle to the hypotenuse, and de-
creased as these numbers increased. Napier’s logarithms are
very curious indeed. To understand why they were thought of
rather than those we have, it must be kept in mind that expo-
nents were not known or used in those days.

Henry Briggs (later of Oxford University, England) greatly ad-
mired Napier’s logarithms and was led to visit him. The scene
at their meeting was impressive. When Briggs came into Napier’s
presence, they greeted each other, and then almost a quarter of
an hour elapsed with each looking at the other and not speaking
a word. Then Briggs said, “ My lord, I have undertaken this
long journey purposely to see your person and to know by what
engine of wit or ingenuity you came first to think of this most
excellent help in astronomy; but, my lord, being by you found
out, I wonder nobody found it out before, when now known it is
80 easy.”

Later, Briggs constructed tables of logarithms of numbers, as
we have them, to base 10. His table was calculated to 14 decimal
places, and extended from 1 to 20,000 and from 90,000 to 100,000.
The gap in Briggs’s table was filled later (1628) by Adrian Vlacq,
of Gouda, Holland, who calculated the list of missing logarithms.

The advantage in the use of logarithms in calculations was soon
recognized, and by 1630 they were in general use in Europe.

In the history of English science Napier’s book comes next in
importance after Newton’s great work on mechanics, the « Prin-
cipia.” Napier’s invention was not the result of a happy accident
but of long continued endeavor, and it is the more remarkable be-
cause made in what was a troubled age, in a rather wild country
judged by our standards, and at a time when all science was in a
most crude state.

For fuller accounts of development of logarithms see ¢ Loga-
rithms,” ¢ Napier,” “Briggs,” ete., in Encyclopedia Britannica.
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‘ CHAPTER 1X
ARITHMETICAL AND GEOMETRICAL PROGRESSIONS

I. ARITHMETICAL PROGRESSION

177. An Arithmetical Progression is a sequence of terms that in-
crease or decrease by a common difference.

E.g. in the series 4, 7, 10, 13, 16, etc., the common difference is 3.

178. Formula for finding the nth Term of an Arithmetical Series.
Let a be the first term, d the common difference, » the number
of terms, and I the last or nth term. Then, by definition, the series

18 a a+d, a+2d a+3d,-i—2d, 1—d,1l
where the dots, as usual, signify terms left out. To find the nth
term, let us write the number of each term over it. Thus,

1 2 3 4 5 n

a, a+d,a+2d, a+3d, a+4d,---,a4(n—1)d.

The last term is found by observing that the coefficient of d is
always 1 less than the number of the term over it. Hence,

1) l=a+(n—1)d

179. Formula for Finding the Sum (s) of all the terms in an
Arithmetical Progression. The sum can be found by writing the
series reversed under it. Thus,

s=a+a+d+a+2d+a+3d+ - +1 —d+1

s=l+l—d4+l—2d+! —3d+ .- +a+d+a

- 28=a+l4a+l+a+it+atl+ - +l+a+l+a (Add Ax)
190
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~ 28=n(a+1), since there are evidently n of the (a+ 's) added.
Then, @ 8= g (@a+7).
Make theorems out of formulas (1) and (2).

180. Exercise in Arithmetical Progression.
1. Find the tenth term of 2, 11, 20, ..
SorurioN. In thisproblem ¢ =2, d =9, n = 10. Then, using equation (1),
1=2+ (10 — 1)9=83.
This answer can be checked by writing the series out. Thus, 2, 11, 20,
20, 38, 47, 56, 65, 74, 83 ; 83 is the 10th term.
2. Find the 12th term of 4, 6, 8, ...
8. Find the 15th term of 144, 138, 132, ...,
SuaceesTION. Put d =—6.
4. Find the 25th term of 1§, 21, 21, ...,
5. Find the 17th term of .5, .3, .1, ...

6. Find the sum of 11 terms of 18, 21, 24,...

SuceestioN. First find 7 as in the preceding. Then, using equation (2).
find s. -

7. Find the last term and sum in 5, 9, 13, etc., to 19 terms.
8. Simplify 7+ 29 + 33 + etc., to 16 terms.
9. Sum 2a—50b,7a—29, ete.,, to 9 terms.

10. Find the sum of 20 terms of 5,1, — 3, ete.

11. Given a=94, n=12, d=—3, to find / and s.

12. Insert 12 terms between 12 and 77.

SvaeesTioN. Herea =12, 1 =177, n=14; to find 4.

13. The first term of a series is 2 and the common difference is
4. What is the number of the term that is 10 ?

14. Find the sum of — 3¢, — g, g, etc., to p terms.

SvaeEsTiON, n=p, d =2q.
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15. Given n=17, d=15, $=399, to find a and &

SuceesTION, Substitute these values in both equations (1) and (2).
Then eliminate either @ or I between the resulting equations.

16. Given a =10,d =17, s = 582, to find ! and n.

SuceesTION. After substituting as before and ehmmatmg 1, a quadratic
equation, with n as its unknown, results.

17. Givenl, a,d, to find n. SuvaecestioN. Solve (1) for n.

18. Given [, a, n, to find d; given [, n, d, tofind a; given s, n, {,
to find a; given s, n, a, to find I; given s, |, a, to find n.

19. Given d, n, s, to find ..

Suecestion. Eliminate the missing letter ¢ between (1) and (2), and
solve the resulting equation for Z.

20. Given a, d, n, tofind 8; given a, d, I, to find s; given d, », ,
‘to find s; given a, n, s, to find d; given a, i, 3, to find d; given n,
I, 8, to find d; given d, n, s, to find a.

21. Given a, d, 8, to find L

Sorurion. These four letters not appearing by themselves in either (1) or
(2), we eliminate the missing letter n from them.

28
2 = .
@) n a+1
23
1) 1= 42,
, ® 1=a+(25-1)a (542
2ds— ad —1d
Il= .
e+ a+
al+ P =a*+al+2ds—ad—-1ld. (Ax.?)
124 dl =a%— ad + 2 ds. (Ax. ?)
12+dz+i_’=a2-ad+z—’+2as. (Ax., § 100.)

4+§=V(a—g) + 2ds. (Ax ?)

l=—gi\/(a—g)’+2ds. (Ax. ?)
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22. Given a=—7, d=3, =430, to find by substituting in
the formula just found.

23. Given [, d, 8, to find a; given d, [, s, to find n; given d, a,
8, to find n.
~ 24. In a potato race 100 potatoes are placed 2 ft. apart in a
straight line. A runner starting from the basket picks up one
potato at a time and carries it to a basket in a line with the
potatoes and 10 ft. from the first potato. How far must the
contestant run ?

25. How many strokes does the hammer on the bell of a clock
make in a 24-hour day?

26. A body falling freely falls 16.08 ft. the first second, and in
each succeeding second 32.16 ft. more than in the second imme-
diately preceding. If a stone dropped from a stationary bal-
loon reaches the ground in 14 sec., how far does it fall the last
second and how high is the balloon ?

27. A stone is dropped from the top of a tower 402 ft. high.
In how many seconds does it reach the ground?

28. If a bullet when fired vertically upward goes 1008 ft. the
first second, how high does it rise, and how long will it be till it
reaches the earth again? In this problem use 16 and 32 instead
of 16.08 and 32.16.

29. A farmer agreed to pay a blacksmith for shoelng his horse
3£ for the first nail he drove, } # for the next, $ ¢ for the third,
and so on. There were 40 nails. How much did he have to
pay?

80. If a person saves $100 and puts it at simple interest at
59 at the end of each year, how much will his property amount
to at the end of 20 years ? :

81. A man was paid for drilling an a.rtlﬁclal well 3.24 marks
for the first meter, 3.29 marks for the second, 3.34 marks for the
third, and so on. The well had to be sunk 500 meters. How
much was paid for the last meter, and how much for the whole ?
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82. A travels uniformly 20 mi. a day; B starts 3 da. later
and travels 8 mi. the first day, 12 mi. the second, and so on, in
arithmetical progression. In how many days will B overtake A ?

SveersTioN. Let # = number of days B travels to overtake A.

Then how many days does A travel ? What is his whole distance ?

With n = &, sum the progression and then make the equation and solve it.

83. The sum of three numbers in arithmetical progression is
12, and the sum of their squares is 66. Find them.

'II. GEOMETRICAL PROGRESSION

181. A Geometrical Progression is a series in which the terms
_ increase or decrease by a common ratio.
E.g. 3, 6,12, 24, -.., the common ratio being 2.

182. Formula for finding the Last Term of a Geometrical Pro-
gression. »

Let a be the first term, + the ratio, » the number of terms, ! the
last term, and s the sum of all the terms. Then, by definition, the

series is, 12 8 4 5 6 n
a, ar, arl, ar’, art, ar®, ..., ar*? .
The last term, ar*~?, is found by noticing that the exponent of #
is always 1 less than the number of the term (written over it in

the series given above).
Hence, @ t=ar

183. Formula for finding the Sum of a Geometrical Progression.
To derive this sum, we write 8 = the sum of the series, and on
the next line, the first equation multiplied by 7.

s=a4ardar+at+art4+ - 4 art4ar!

rs=  ar+arf+a+art4 .o far? fart' fart (Ax ?)

78 — §= ar* — a. : (Sub. Ax. ?)
So(r—1)s=ar" — a. (On factoring.)

@ s=24"=1), | (Ax. ?)

r—1
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ExpLANATION. As already stated, the equation over the long line, p. 194,
is obtained by multiplying the first equation by . Thus, r times the left
member gives rs. Now, when we get the product of the right side of the first
equation multiplied by r, we write the product of a and r underneath the
ar of the first line, and the product of ar and » underneath ar? of the first
line, and so on. The ar~2 term of the second line comes from a missing
term (indicated by dots) in the first line. When we subtract the first equa-
tion from the second, all the terms cancel except the first and last. '

Again, since 1 = ar*, Ir = a»*! X r = ar*. Hence, substitut-
ing Ir for @™ in equation (2), p. 194, we have

Ir—a
3) 8= .
@) s r—-1

Make theorems out of formulas (1), (2), and (3).

184, Summation of a Geometrical Progression the Limit of whose
Last Term is 0. (The last term is really an infinitesimal, or
number smaller than any that can be named.) Using eq. (3),
§ 183, we have,

.. ‘"OxXr—a —a a
4) Limit of s = = =
()] it of s ) 11—

1. Sum the series 1, 4, 4, 4, ¥4, --- to infinity.

SovrurioN. — Here @ = 1, = } (2d term <+ 1st term), and we put I = 0.
1

2. Sum the series §, §, 4, to infinity.

8. Sum the repeating decimal .282828..., that is find the
common fraction which reduced to a decimal gives these figures.

8= =2. Ans.

SovLuTiION, a=.28, r=.01, I=0. Then,

Proor: 28 + 99 = .282828...,

4. Sum the repeating decimal .43782782....

SuearsTioN. Regard .00782 as the first term, and add the answer to .48.
‘What does » equal here ?
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185. Exercise in Geometrical Progression.

1. Find the 8th term of 6, 12, 24, .--.
Find the 7th term of 7, 21, 63, -.-.
Find the 9th term and sum of nine terms of 1, 3, 9, «¢-,
Find the 10th and 16th terms of 256, 128, 64, ...
Find the last term and sum of 8.1, 2.7, .9, .-- to 7 terms.
Find the last term and sum of V2, V6, 3V?Z, - to 12 terms
Find the last term and sum of — %, 3, —§, - to 6 terms.
Sum to n terms 5, 24, 11,:--.  Suecesrion, Here n=n.
Sum to infinity 3+ 3§+ 34 .--.
Sum to infinity 4 4+ 23 + 1§+ ...
. Find the common fraction value of .3333:e..
Reduce to a common fraction .3787878...,
. Given a =8, r=2, s=248, find  and n.
. Given r=6, n =5, 1 =1296, find a and s.
. Given r=2, n=12, 1 =43008, find a and s.
Insert 6 geometrical means between 56 and — .

® ® e o R wN
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17. The 4th term of a geometrical progression is 160 and the
. ratio is 4; find the 7th and 15th terms.

18. A man deposited $500 in a savings bank that paid 4%
interest, compounded annually. If the money was left 4 years,
what sum stood to the depositor’s credit ?

SucgesTION. 7 =1.04, n =b5. The $500 is first term.

19. In using an air pump the pressure is reduced } at each
stroke and stands at 30 in. at the beginning. What is the height
of the mercury after the fifth stroke ?

SugeesTION. =}, n =6.
20. If a rubber ball rebounds } of the distance it falls each

time, what will be the distance a ball moves that is thrown up
with a force to carry it 75 ft. ? (See § 184.)
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21. If a man, whether by his example or designedly, leads a
single fellow-man into the path of rectitude each year during 20
years, and each of these men in turn leads one man aright each
year from the time of his change, and so for every one affected,
what will be the total number influenced as a result of the first
man’s effort at the end of the twenty years ?

22. Achilles pursued a tortoise, which was one stadium ahead
of him, with a speed 12 times greater than that of the tortoise.
When Achilles reached the place where the tortoise had been
when he started, the tortoise was still {; stadium in advance of
him; Achilles having traversed this distance, the tortoise was
still ;17 stadium ahead of him, and so on, ad infinitum. Will
Achilles then never catch up with the tortoise ?

Nore. This problem is a statement of Zeno’s celebrated sophism. If
2 = number of stadia Achilles must run to catch tortoise, show that z = 14y.
While it is perfectly allowable to conceive of the distance divided up in the
way described, the sum of the infinite number of parts is only 14 stadia.
Achilles will catch the tortoise in the time it takes him to run 14 stadia.
The sophism consists in implying a finite period of time is needed for each
division of (1 + 4 + 113, etc.) stadia.

23. Seven old women go to Rome; each woman has 7 mules,
each mule carries 7 sacks, each sack contains 7 loaves, with each
loaf are 7 knives, each knife is put in 7 sheaths. What is the
sum total of all? (From Leonardo’s Liber Abaci.)

24. The population of a city is 100,000, and it increases 50 9%
every 4 years. What will the population be in 20 years ?

26. A person has two parents, each of his parents has two
parents, and so on. How many ancestors has a person, going
back ten generations, counting his great-grandparents as the first
generation (and assuming that each ancestor is an ancestor in only
one line of descent) ?

Note. — Before leaving the subject the pupil should be tested to see if
he can distinguish between arithmetical and geometrical progression problems.



CHAPTER X

ANNUITIES. APPLICATION OF PROGRESSIONS AND
LOGARITHMS

186. Annuities and their Calculation. An annuity certain is a
sum of money payable at the end of each year, or other period,
for a fixed number of periods.

One fundamental doctrine about interest should be clearly
understood, viz., that in order to add sums of money due at dif-
ferent times, they must be reduced to the same time. $ 100 due
1 year ago, $100 due now, and $100 due in 1 year are three
different sums. Assuming 6 9, as the rate of interest, $100 due
1 year ago will have drawn 1 year’s interest, and be worth at
the present time $106: $100 due now is worth $100; $100
due in 1 year is worth the present value of $100 due in 1 year,
(see § 172, 2), or $100 +1.06(= $94.34). Similarly, $100 due
2 years ago is worth now at compound interest $112.36, and the
present value of $100 due in 2 years is $100 + 1.06% or $89.
The present value of $ 1 due in 1 year, if » = the rate per cent,
81 $1
147r A+ r)”
and the present value of $1 due in » years at compound interest

$1
@+
present worth of $1 due in 1 year by p: then the present worth

is The present value of $1 due in 2 years is

is For convenience in what follows we will denote the

of $1 due in 2 years is p? and in n years is p". Thus, p =

147
1. To find the cost of an annuity.
If a man contracted with a bank for the latter to pay him an

annuity of $500 at the end of each year for 20 years from date of.
198
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agreement, how much cash would the bank demand from him, if
it was to pay him 3} 9y compound interest on all money remaining
unpaid at any time? The bank could afford to make such a con-
tract, because it could make a profit by lending the money obtained
to its customers at a higher rate than 3} %.

Let C be the cost of A dollars each year for n years and p the
present worth of $1 due in 1 year at the given rate per cent.
The present value, or cost of the first payment, is evidently Ap
dollars; the present value of the second payment of A dollars
due at the end of 2 years is Ap* dollars; and so on: the present
value of the last payment of A dollars due at the end of n years
is Ap" dollars. ‘

Adding these sums to get the cost of all the payments, we have,

C= Adp + Ap* + Ap* + --- + Ap~

But the terms of the right member form a geometrical progres-
sion in which a = 4p, I = Ap*, r =p, 8=C. Substituting these

values in (§ 183, eq. (3)) 8= l:—; , we get
Ap" xp Ap _ 400" —p, 1
= ) =4 2—1 @

ExampLE. Find the cost of an annuity of $150 each year to run 12 yr.
if 89, interest is allowed on all money not paid back.

log p = log T — log (1 +.08) =1.9872. (Sincelog1=0.)
Sop =971
log p+ = '°g(1—+17)..—+1= 0 —(n + 1) log (1 + .03) = 1.8336.
. pl8 = 6817,
Then, C='150x£%1,;1%'371_150x %82‘;3

log C =log 150 + log .2893 — log .029. .. C = $1496.66. See § 172, a.
Twelve payments of $150 each make $1800 paid back. The cost,
O 1496.55, with its interest, is equivalent to the total paid back.
COLLINS'S ADV. ALG. — 14
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2. To find the cost of an annuity to begin-at the end of m years
and run for n years.
P —p
-1
years by multiplying this sum by p™ (§ 172, 2) If C' is cost,

Here one must find the present worth of $.4 due in m

then C'=Apmn——~ p i /) 2

187. Repayment of Interest and Principal together in Annual
Payments. .

To find how much must be pmd in annual installments, interest
and principal together, to pay buck a sum of money borrowed.

This problem makes 4 unknown and C known in formula (1),
§ 186. Solving for 4, we get

1
A= cpf+1 — ®)

ExaMPLE. A man borrows $ 1800, agreeing to repay it in ten equal annual
payments, such payments to include interest and principal. How much shall
he pay each year if 49, is the rate of interest allowed ? Ans. §221.94.

188. Slnizing Fund. 1. To find how much money must be secured
and put at interest each year so that such amounts taken together
will equal a given sum due at a specified time in the future.

Let 8 = the sum to be had at the end of n years, F'= the number
of dollars to be secured each year, and » the rate per cent of
interest. To save space we will write a for 1+ 7. Thus a is the
amount of $1 due at the end of 1 yr. at r per cent.

The F dollars secured by taxation, or otherwise, by the end of
the 1st year will be loaned out and draw interest for n — 1 years,
and will amount to Fa*~! dollars (§ 172, 1); the second F dollars
secured by the end of the second year, will draw interest for
n—2 years, and amount to Fa"? dollars; and so on. The last
F dollars will not draw interest, being secured during the last year.
Writing these amounts in reverse order, we have

S=F+ Fa+ Fa®+ Fa® + .-+ + Fa*
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The terms of the right member of this equation form a geomet-
rical progression, in which a (the first term)= F, | = Far?}, s= 8,
r(the ratio)=a.  Substituting these values in the formula

s= r—a for the sum of a geometrical .progression, we get
r —
_Fa-'xXa—F F(a"—1) (Sincea—1=
§= a-1 = r T l4r—1=r) (4)
Solving for F, as it is the unknown, we get
S :
F=—— ®)

ExamrLe. How much must be raised by a town, and put at interest at
49, each year, to pay off bonds amounting to $30,000 which become due in
20 yr. ?

log 1.042" = 20 x log 1.04 = .3400 ; hence, a™ = 2.188.
log F = log 80000 + log .04 — log 1.188.
. F=$1010.23.

Nore. Towns often create a sinking fund by buyjng up their own bonds,
or those of other places.

2. To find the amount of an unpaid annuity.
Evidently § in formula (4) is the amount of an annuity of
F dollars left unpaid until the end of the period.

3. To find the amount of an annuity which remained unpaid m
years after the last payment was due. ‘

Here we must find the amount A4’ of F(a*—~1) dollars which ran
r

for m years. Thus
a—1

A' = Fam ()
189. Bonds. A bond is in effect a promissory note legally
authorized and signed by the proper officers of the municipality
or firm issuing the bonds, usually having interest coupons
attached for each interest payment.
Bonds vary in value somewhat in the manner of stocks, accord-
ing to differences in character of the properties bonded, to varia-
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tions in the money market, etc. Thus of two issues of $1000
bonds due in 10 years at 5%, one may sell at 104 ($1040 for a
$1000 bond) and another at 96 ($960 for a $1000 bond). A, who
demands greater security, -may prefer the former, yielding 4} %
on his investment, while B, who will take a greater risk for a
greater return may prefer the latter, yielding about 54 %. Thus,
in studying bonds, two rates of interest appear: one, that named
in the bond, giving its rate of interest; the other, the income rate
that the purchaser will realize on his money if he buys the bond
at a price other than par. )

The calculation of bonds, though much like that of annuities, is
quite complicated and should be deferred to a later part of the
curricalum. Bond tables are in common use in which the left
column gives prices from above par to below par (as from $ 145
to $76). The other columns are headed by numbers of years, as
1-50, and the body of the table gives the interest rate realized if
the bond runs for the corresponding period at the top of the
column and is bought at the price opposite in the left column.
(See p. 205.)

190. Exercise in Annuities.

1. Find the cost of an annual pension of $800 each year for
8 years, allowing 4 % compound interest.

SuveeestioN. Use eq. (1), § 186.

2. Find what annuity for 5 years $2220 will yield at 4%
interest by using eq. (3), § 187.

3. If a corporation sets aside $ 5000 each year for 10 years
and puts it at compound interest at 4 9, what sum will be avail-
able at the end of the time? Which of the formulas (1) to (5)
suits the problem ?

4. Find the cost of a pension of $1200 each year for 15 yr.
at 3% %.

5. A man 59 yr. of age is expected to live 15 yr. He has
$15,000 with which to buy a life annuity. If money is worth
4 %, how much will he get each year ?
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6. A town owes $150,000 due in 15 yr. What sum must be
collected and set aside annually to cancel the debt. when it is due,
if 5 9 interest can be obtained ?

7. Find the cost of an annuity of $ 400, to begin at the end of
10 yr., and run for 20 yr. after that, if money brings 3} 9.

8. An annuity of $75 to run for 12 yr. was unpaid at the end
of 15 yr. What amount was due if the rate was 3 9, ?

9. A city borrowed $ 160,000 to construct a sewer system, and
agreed with the lender to repay this sum, principal and interest
together, in 25 equal annual installments. If 4 9, was the inter-
est paid, how much was paid each year ?

10. A man borrowed $ 750 of another, agreeing to repay it in
5 equal annual payments, principal and interest together, with
44 9% compound interest. What should each payment be ?

11. An annuity of $500 was unpaid for 10 yr. How much did
it amount to if the interest was compounded semiannually at 4 % ?

SuceestioN. The geometric series here would be 500 4 500 x 1.0404 4
500 x 1.04042 4 ..., 1.0404 equaling 1.023,

The following exercises are to be solved by use of the tables
on pp. 204 and 205.

12. Find the amount of $2700 at 3 9, compound interest at the
end of 15 years.

13. Find the present worth of $1500 due at the end of 8 years,
at 4 9 interest.

14. Find the amount of an unpald annuity of $350 a year for
15 years, at 5 %.

15. Find the cost of a $1000 bond paying 5% semiannual
compound interest if it has 10 years to run and will realize the
purchaser 4.38 %,.

" 18. What rate of interest will a purchaser realize who pays
$1040 for a $1000 bond, paying 5% semiannual interest, if it
has 15 years to run ?
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INTEREST AND ANNUITIES

PRESENT VALUE oF AMOUNT OF Iﬁi’;‘;&;
YrARS
$1 per annum $1 per annum | , Which dis-
$1 due at end $1 due at end charges debt of
of nth yeur d:‘? e':;, ‘;’gff of nth year d:;:? e:; ‘;"g“?f $els :II“: Lttg ;2::.

At 39,
1 .9709 9709 1.0300 1.0000 1.0800
2 .9426 1.9136 1.0609 2.0300 6226
3 9161 2.8286 1.0027 3.0909 .3636
4 .8885 3.7171 1.1266 4.1836 .2690
5 .8626 4.5797 1.1693 5.3001 .2184
6 .8376 5.4172 1.1941 6.4684 .1846
8 71894 7.0197 1.2668 8.8923 1425
10 .7441 8.5302 1.3439 11.4639 1172
16 6419 11.9379 1.55680 18.5989 .0838
20 5637 14.8776 1.8061 26.8704 .0872
26 4776 17.41381 2.0938 36.45693 0574

At 49
1 9616 9616 1.0400 1.0000 1.0400
2 .9246 1.8861 1.0816 2.0400 6302
] .8890 2.7751 1.1249 3.1216 .3603
4 .8648 3.6299 1.1699 4.2465 2766
1] .8219 4.4518 1.2167 5.4163 .2246
6 7903 5.2421 1.2663 6.6330 .1908
8 71307 6.7327 1.3686 9.2142 .1485
10 8766 8.1109 1.4802 12,0081 .1233
15 .55663 11.1184 1.8009 20.0236 .0899
20 4564 13.5908 2.1911 29.7781 .0736
25 8751 15.6221- 2.6668 41.64569 .0640

At 59
1 . .9624 9524 1.0600 1.0000 1.0500
2 .9070 1.8594 1.1026 2.0500 .6878
3 .8638 2.7232 1.1576 3.1626 .3672
4 .8227 3.6460 1.2166 4.3101 .2820
5 .7836 4.3296 1.2763 5.6266 2310
6 7462 5.0757 1.3401 6.8019 1970
8 6768 6.4632 1.4776 9.5491 1647
10 .6139 7.7217 1.6289 12.5779 .1296
15 .4810 10.3797 2.0789 21.56786 0063
20 .3769 12.4622 2.65633 83.0660 .0802
25 .29563 14.0939 3.3864 47.7271 0710
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PORTION OF A PAGE OF A BOND TABLE

Rate of interest realized if purchased at price in same row of
left column and held for number of years at top of column.

At 59, (INTEREST PAYABLE SEMIANNUALLY)

NuMBERS OF YEARS TO MATURITY

Price
2 4 (] 8 10 15 20 25
120 1.60 2.26 2.70 3.29 8.59 8.76
115 1.16 2.81 2.89 8.23 3.68 8.91 4.04
110 2.42 2.87 3.16 8.66 3.79 4.10 4.26 4,34
1056 3.64 4.06 4.26 4.38 4.54 4.62 4.66
104 2.92 3.91 4.24 4.40 4.560 4.63 4.69 478
108 3.43 4.18 4.43 4.6b 4.62 4.72 4.77 4.80
102 3.96 4.45 4.62 4.70 4.75 4.81 4.84 4.87
101 4.47 4.72 4.81 4.86 4.87 4.91 4.92 4.98
100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
99 5.64 5.28 5.20 5.16 5.18 5.10 5.08 5.07
98 6.08 5.66 5.40 5.31 5.26 5.20 5.16 5.14
o7 6.63 5.86 65.60 5.47 5.39 5.30 5.24 5.21
96 7.18 6.14 5.80 5.63 5.68 5.40 5.88 5.29
96 7.74 6.44 6.00 5.79 5.66 5.50 5.41 6.37
90 7.97 7.07 6.63 6.37 6.03 5.86 5.76
85 9.60 8.22 7.63 7.12 6.69. | 6.88 6.19
80 9.44 8.60 7.94 7.21. 6.86 6.66

17. If a debt of $20,000 is paid off in 20 annual intallments of
principal and interest together, how much will have to be paid
each year if 4 9 compound interest is allowed ?

18. What is the present worth, or cost, of an annuity of $750 .
a year for 25 years if the rate is 49 ?

19. I pay $36.84 per thousand on a life policy. What will be
the total sum invested at the end of 20 yr., allowing 4 ¢, com-
pound interest ?

StecesTiON. Insurance premiums are paid at the beginning of each year.

Find amount of annuity for 19 years at end of 20 years and add to it amount
of first payment running for 20 years.

20. What will a 59 $1000 bond having 25 yr. to run and
eosting $1050 net a purchaser ?



CHAPTER XI
BINOMIAL THEOREM

I. MATHEMATICAL INDUCTION

191. Mathematical Induction.— In the proof of the binomial
theorem, which follows, use is made of mathematical induction.
Mathematical induction, like induction in natural science, pro-
ceeds from the particular to the general, but it differs from induc-
tion in natural science in that the generalization is complete and
absolute in its application, while in natural science the induction
is very rarely, or never, complete. To make the nature of the
method clear let us consider some examples of its application.

1. Show by mathematical induction that the sum of n terms
of the sequence

1 1 . s_n
1x2’2x3’3x4 n+1
Proor. Let 815 =4%; 8. 1 —— e — 1 __2 ete.

1 ix2 2x8 8’
We see that the value of each S (sum) examined has for its numerator
the same as the 8's subscript and for its denominator I more than its nu-
merator. Then, by this rule we should have

1 1 1 _n
S=ratnatoat X GED A+l

Now ¢ Sp+1”’ means the sum of all the terms from the first to the
n+1¢th. Thissum can be found by adding the next term to the value of S,.

= 1 n+1 -
Th S“ = n -— By addi )
e + n+1+(n+1)(n+2) n+2 (By addition.)
Hence we see that IF S, = +;

206
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But we know S; = §, whence it follows that §; = }, and so on indefinitely.

Thus, the formula §,=
to be proved.

Notice particularly the argument on the last line of p. 206 and top of this
page.

This method can be used for proving many such exercises. Thus, by it
we can prove that

18428 4+ 85 4 .. to nd =(ZZ‘)’ (n+1)2

L i holds universally for this sequence, which was

2. Show by mathematical induction that z"—gy* is always
exactly divisible by «—y.

Proor. z*—yn rx—y

n — zﬂ—lg lzn—l
-ly—yn Now, evidently if zn-1— yn-1 contains z — y,
or y(an-1—yn-1) the remainder after the first division will, and

8o the whole division will come out without remainder.

Thus, we learn that if the difference of two same powers of z and y, viz.
a»—1 — y»-1 contains x — y, then the difference of the next higher powers,
xn — yn, will exactly contain z — y.

But we know that x2 — y2 contains 2 — y ; hence 8 — y8 contains x — y ;
then xt — y* contains x — y exactly ; and so on indefinitely. This theorem
can be proved by means of the divisibility theorem, § 23, VIL

3. Show by mathematical induction that 2™ — y™ contains
x4 y.

SuaarstioN. In this case the division will have to be carried on until two
terms are found in the quotient.

4. Show by mathematical induction that ®**+!+ 3***! contains
z+y. (§ 21, VILL)

SvaeEsTION. Make this demonstration &ependent on that of Ex. 8, get-
ting only one term in the quotient.

a. The demonstrations by mathematical induction, as already stated, give
results as universally true as by any other method. In physical science
results obtained by induction always remain open to revision. Thus, while
it would be found that water boils at 212° at a thousand places, we should
find the rule breaking down at mountain heights. In mathematical induc-
tion all the particulars are arranged in a series like ninepins, We upset one
of the nine pins and all the series goes down,
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IL THE BINOMIAL THEOREM

192. The Binomial Coefficients. We saw in § 53 that the signs
and exponents in raising binomials to powers gave little trouble,
but that the coefficients were found with more difficulty.

Let us write down these coefficients for several powers. They

are for (a4, 1,1
for (a+0)%, 1,2, 1
for @+0)® 1,3,3, 1
for (@a+0)4, 1,4,6, 4, 1
for (¢ +0)%, 1, 5, 10, 10, 5, 1

for (a+b)%, 1, 6, 15, 20, 15, 6, 1

Pascal, an eminent French mathematician (1623-1662), observed
that the coefficients in any line can be obtained from the line
above it by adding the coefficient immediately above the required
one to the one which precedes it.

Thus, 6 in the fourth power comes from adding 3 above it to
the 3 just before this 3. Phe last 15 in the sixth power comes
from adding 5 above it to the 10 which precedes the 5; and
so on. This writing and deriving binomial coefficients is called
“Pascal’s triangle.”

Sir Isaac Newton (1642-1727) conceived the idea of making a
JSormula which would give directly the expansion of (a4 b) to
any power, or any desired term in it, without the use of Pascal’s
triangle.

193. Development of Newton 8 Theorem for any Positive Integral
Exponent.

Let us take n to denote the exponent of the desired power and
use the rules of § 53 to write down the result in the same way
in which we wrote down particular powers, such as the sixth,
tenth, ete. In this way we get
' N P n—1 nmn 1) n—3p3_ N n_l)(n 2 n—858
(@a-dy=a"—La b+i_—a b — i—)lxo = Dar-2pt-+ ote.

Thus, to get any coeﬂiclent we multiply the coefficient of the



"DEVELOPMENT OF NEWTON'S THEOREM 209

preceding term by the exponent of the leading letter, and divide
by 1 more than the exponent of the other letter.

Now, while we saw that this rule held as far as we tried it, we
do not know yet that it holds always, and we seek to prove that it
is universally true. Instead of passing from the fourth to the fifth
power, or from the fifth to the sixth, let us now try to pass from
the nth to the (n 4 1)th power. To do this we multiply both
sides of the equation just written by a — b. Then, for the left
side of the new equation we have (a — b)* X (a —b) = (a — b)**1,
For the right side, we have

a —"a-1p + (B =1) fngpa (0 — 1) (8= 2) ju-rps 4 ete.
1 1x2 1x2x3 .

a —b

artl — ?i‘aub + %) avpr R =) (R—2) s + ete.

1x2x3
—a"d + 2ar-1p3 — 2 =1) g aps + etc.
1 1x2
1_(n+1) BADn 0y (A+D)(0—1) "—3p8 1 et
ot 1% P TV RT 1xexs OO +e
_ Hence,
(a—b)#1=a"+1—(—nlil—)a~b+';L";(l2Maﬂ-‘b’— ( ""'l‘x . x';-l an-2b8 4ete.

Examining this result, we see that the rules of § 53 give
exactly the same terms as we have here.

From this we learn that If the binominal theorem holds for the
nth power, it kolds also for the terms of the (n + 1)th power ; that is,
Jor the next higher power. ,

Notice that we assumed the theorem held for the nth power,
and proved that if it held for the nth power, it would hold also
for the terms of the (n 4 1)th power.

To finish the demonstration we use mathematical induction.
‘We say we know the theorem holds for the sixth power, for we
got that result by actual multiplication. Therefore, by the demon-
stration just concluded, the theorem holds for the next higher, or
seventh, power. Again, since it holds for the seventh power, by
the theorem it holds for the eighth power; and so on indefinitely.
Therefore, it holds for all powers.
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194. To find the rth Term in the Binomial Development.
1 2 3 4

— n—1 ”(”"‘1) n—2 n(n—1)(n—2) , 4
(axd)r=am+= a b+ a b“:l; Txoxs ° b3 + ete.

Here we have written the number of each term over it.

Suppose now we attempt to write down the rth term. To do
this we notice that the last number subtracted fronr n in the
numerator of any coefficient is always 2 less than the number of
the term; that the last figure in any denominator is always 1 less
. than the number of the term; that the number subtracted from
n in the exponent of a is always 1 less than the number of the
term. Hence, the rth term in the value of (a + b)" is

ﬂ"’ —DH(n—-2) - (" = [ = 2]) -,
I1x2x3x-r—1
1. Find the 6th term of (a+b)%, by substituting in the

formula for the rth term n =13, r= 6.

18 x 12 x 11 X 10 X 9 015 _ 1987 o835, 4
SoLuTION. 1x2x8x4x5 > 4ns

2. Find the 5th term of (x + y)™.

3. Find the 4th term of (x — y)".

4. Find the 6th term of (32 — 2y)". (See § 53, 6.)
6. Find the 12th term of (2 a — d)%.

195. Exercise in Raising Binomials-to Powers by the Theorem.
1. Expand (a + b)%, getting six terms of the answer.
2. Expand (a:§+ 3)%. 3. Expand (3a! + a*)’.
4. Find the 7th term of (2 z — y)¥.
6

. Find (2 2 — y)® to seven terms in answer.

Ll

Expand 1 — ;—:to the 9th power.

7. Find the rth term of (32 — 2 y)®.
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8. Find the middle or 6th term of < — glc)"’.

9. Find the middle term of (m — m-?)".

10. Find the sum of the binomial coefficients for the 15th
power.

SuceestioN. If (a 4+ b)18 were expanded and then a and b each set equal
to 1, we should get -the sum of the coefficients, which sum evidently would
equal left member, or 215,

11. Expand ( \ﬁ;_’_ ‘7@>4
2 3

— ~ — 5
12. Expand V—a_V-by
2 3
While the proof given in § 193 does not cover the case of frac-
tional exponents, it is true that the binomial theorem holds good
also for fractional and negative exponents.

13. Show that one gets the same result by applying the bino-

mial theorem to (a+ b)'}, as one does by extracting its root by
the method of § 58.

14. Apply the binomial theorem to expand (z+ y)! and
(z +)%, and then form the product of these results, getting the
first terms of (¢ + y)3, or 2* + 3 o% + 3y +

15. Expand (a + b)* to four terms.
16. Expand (x— 2)~? to five terms.
17. Expand (a — b)'g to four terms.



CHAPTER XII

INEQUALITIES

196. Inequalities. An inequality, or an inequation, is a state-
ment that one quantity is greater or less than another. The
sign for “greater than” is >, and that for “less than” is <.
The opening of the angle is towards the greater quantity. These
symbols, with. =, are called symbols of relation. By “greater
than ” is meant higher up in the algebraic scale.

197. Principles governing the Solution of Inequalities.

1. It is allowable to transpose in an inequality just as in an equa-
tion. :
Proor. Leta +c>b.
Then, a>b Fc. (Equals added to or subtracted from unequals give
unequals, since to do this merely slides both

members of the inequation the same distance
along the algebraic scale.)

2. It is allowable to multiply or divide an inequality by the same
positive number ; but multiplying or dividing by a negative number
reverses the sign.

Proor. (1) Let a>b, and m be a positive number.

Then, ma > mb. (Unequals multiplied by the same positive number
give unequals, and that product is the greater
which is obtained from the greater of the two un-
equals. This is true whatever signs ¢ and b have.)

(2) Let m be negative.

Then, ma < mb. (By the preceding case and because the quantity
which was greater than the other at first becomes
less than the other qfterwards, when the signs of
both are changed.)

The pupil should test these statements with numbers expressed

in the Arabic notation.
212



SPECIAL THEOREMS IN INEQUALITIES 213

3. Inequalities can be added, greater to greater and less to less,
the former sum being greater than the latter, but it is not allowable
to subtract one inequality from another.

The first part of the theorem is evidently true, but the student
may not see why he cannot subtract one inequation from another.
An example or two is sufticient here, since if the rule fails in one
instance, it does not hold.

Thus, 12 >12 1§>1§
> > 2
7> 6 7% 9

4. The members of an inequality both of whose terms are positive
can be raised to the same power.

198. Special Theorems in Inequalities, and Exercises.

1. To prove that the sum of the squares of any two real and
unequal numbers is greater than twice their product.

Proor. Let a and b be any two real and unequal numbers.

Then, (a —b)2>0. (Since a square number is always posi-
tive, that is, greater than 0.)
Or a?—2ab + 52> 0. (Squaring @ — b.)

. a3 4 b2 >2ab. Q.E.D. (§ 197, 1)
2. Prove that any positive fraction whose terms are unequal
plus its reciprocal is greater than 2.
Thus, to prove L g >2.
SuceesrioN. '~ Make this Ex. deypend on Ex. 1, using § 197, 2.

3. Prove that the arithmetic mean of two different positive
numbers is greater than the geometric mean.

Thus, to prove < ;— b~ ab.

SucGEesTION. Square both members, § 290, 4.
4. Show that #*+y® >2%+ «y® when 24y>0. (See § 197, 2).
5. Show that 2*4+1 >2a*42 when 2 4+1>0 and 1.
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6. Show that o*+y*+ 2> xy + a2+ yz if =, 9, # are unequal.
SuveaerstioN. Use § 198, 1, and § 197, 8, and then divide through by 2.
7. If 20+ } x—4> 6, show that z > 4.

8. Show that the difference between two sides of a tna.ngle is
less than the third side. If a, b, ¢, are the three sides, show that
¢c—b<a, using § 197, 1,

9. Two of the sides, a and b, of a triangle are respectively

9 and 15 inches. Between what limits must the third side ¢ lie ?
10. If 32—T7—52>3%x—9, what limiting value does  have ?
11. If a, b, and ¢ are positive numbers, and if a >b, prove

that 2+¢ &

at & o <

12. For what values of zis 2’ —62—T7>0? (See § 100.)

13. A’s record time for i‘unning a mile is 4 minutes and 30
seconds, and B’s is 4 minutes and 40 seconds. Less than how
many feet handicap shall A give B so as still to beat him ?




CHAPTER XIII

REASONING IN EQUATIONS — DISCUSSION OF THE QUAD-
RATIC — DISCUSSION OF PROBLEMS — DEFINITIONS

1. REASONING IN EQUATIONS

199. Validity of Processes in the Solution of Equations. It might
be supposed that any root of any equation obtained by axiomatic
processes would verify when substituted in the original equation,
but such is not always the case. This does not mean that the
axioms are not true, but that new equations obtained by means
of them are not equivalent to the given equation, that is, do not
have identically the same roots as the given equation.

200. Equivalent Equations. Reversibility of the steps of a solu-
tion. Whether a root obtained will satisfy the given form of
the equation depends on whether the steps of the solution are
reversible. Two equations such that either can be derived from
the other, and which have exactly the same roots are said to
be equivalent (see p. 43). The processes used in the solution of
simple equations rarely give anything except equivalent equa-
tions, but in the solution of radical, quadratic, and higher equa-
tions, new roots are frequently introduced, and sometimes roots
of the given equations are lost in the process of solution.

1. Two equations- are equivalent if one can be obtained from the
other by adding the same quantity to both members. (By Addition
and Subtraction Axioms.)

" Proor. Let § and §' denote the two members of an equation
and a any third quantity, each of these being capable of contain-
ing both known and unknown quantities.

Then, any value of the unknown which satisfies 8 § evi-

COL. ADV., ALG. — 15 216



216 REASONING IN EQUATIONS

dently satisfies § +a=28'+a. Also any value which satisfies
8 +a=2_8"+ a, also satisfies § =§".

Since transposition depends on the addition and subtraction
axioms, equations obtained by it are equivalent.

2. Equations obtained by multiplying or dividing both members
of an equation by the same known quantity are equivalent.

If a is a known number, and if § =§', then a8 = a$'; also if
a8 = a$', then § = §'.

3. An equation obtained from another by squaring its members
or raising them to a higher power, or extracting the same root of each
member 13 not equivalent to the given equation.

As before, let § and 8' denote the two members.

We have =9,
whence =8%; (8q. Ax.)
then §?—-8%=0. (Sub. Ax.)

Factoring, (§+8)(8-8')=0.
We have then § + §' =0, whence § =—§'; (Solution by fac-
toring.)
$—-8'=0, whence § =38".
The last equation is identical with the given equation, but we
have also the equation § 4 §8' =0 in addition, which is a new
equation.

ExampLE. Given Ve+5+ V=1
Ve+b=1-—Va. (Sub. Ax.)
z+b6=1—-2Vz 42 (Sq. Ax.)
2V = —4. (Sub. Ax.)
4z=16,2=4. (Sq. Ax.)

VerrFicATION,. VA b5+ VE£1,0r,8+2%1.

Thus 4 is not a root of the given equation. Noticé that if we had started
with the equation Vz + 6 — Vz = 1, the solution would have differed from
that above only in a few signs, and the answer would have been 4, which
answer would have verified. The three equations Vz + 5 + vV = + 1, and
—Vv2+5+ Vz =1 have been called impossible equations, since if the signs
are taken just as they stand there i8 no root that will satisfy them,
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4. An equation may not be multiplied or divided through by a
JSunction of x which equals 0, or some number divided by 0, when the
value of x is substituted in it.

y+= 1+4-=
ExaMpLE. —¥+—_i’=
y—-= 1--
y y
1 1 1 1 1,1
y+io1-1y +1—-——=2(y—1—-+—). Mult, Ax,
y pt? y ¥ v ¥ ( )

Clearing this equation of fractions and collecting, we get
4y3+4y =8, whencey =1or — 2.
But while y = —2 satisfies the original equation, y =1 does not, since

%+§ on the left side has no meaning if 0, as usual, stands for what is called

absolute 0, and not a limit as explained in § 207, while 2 on the right side is 2.

The reason why the root y = 1 appeared is because when we first cleared of

fractions, we multiplied the equation by y — 1, and because y =1 we were

really multiplying by 0, which is not allowable by the principle just stated.
This principle explains the fallacy in the so-called * proof * that 1 = 2.
Thus, let @ =z; then ax — 22 =q? — 22;

whence, on factoring, 2z(a—z) = (a + z)(a —2).

Then z=a+ 2z, (Dividing by a — z.)
or, z=x+4+2xr=22; (Since @ = 2.)
whence 1=2. . (Dividing by z.)

The first and second equations are true equations; the third and all the
rest are false, since to get the third we divided by a¢ — z, and as ¢ = z mak-
ing a — x = 0, we were dividing by zero.

We may set forth the truth, illustrated under 4, more briefly as
follows:

Let A be any expression containing the unknown, and, as
before, let § and §' be the two members of an equation.

Then, §=29"
Whence RS =RS' (Mult. Ax.)
Then, RS —ARS'=0,0r B(S — §8')=0. (Transposing and fac-

toring.)
Setting each factor equal to 0, we have # =0, and § — §'=0.
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Thus, the new factor with its root has been introduced into the
equation. .

This case includes 3, above, since we can write # = 8§+ §'.

In conclusion, then, if at any time we cannot tell whether a
root found belongs to the given equation, we always have this
recourse that we can substitute it in that equation and find out.
Roots should always be verified in the original equations.

201. The Analytic Method. Algebra uses the analytic method,;
arithmetic, the synthetic. When a problem is solved by the
synthetic method, one starts with the numbers that are given,
and, by combining them in a certain order, obtains the answer.
In algebra, on the other hand, one treats the auswer as if known,
calling it ; then, forming the equation, the course is backward
to the answer.

To illustrate, take the problem, What number is that whose
square increased by 11 times the number equals 60 ? Putting
this in the form of an equation, we have

@+ 11 z = 60. (If there is such a number as
described in the problem, then
this equation is true.)

Then, 4 2* 4+ 44 2 = 240. (If the preceding equation holds,
. this one holds.)

4%+ 442 4121 = 361. (If the preceding equation holds,
: this one holds.)

22+ 11 =4 19. (If the preceding equation holds,

this one holds.)
x=4,or —15. (If the preceding equation holds,
this one holds.)

Now, we assume we can reverse the reasoning. We know there
is such an equation as z = 4, or # = — 15; then (multiplying each
member by 2, and adding 11 to each result), the fourth equation
holds, then the third, then the second, then the first. In this way

" we see that the steps of our solutions should be reversible if we
desire to draw safe conclusions.
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The problem ¢to find a number such that the sum of its square
root and the square root of 5 more than the number is unity’ gives
the equation of the preceding article, Vz+5+ Vz=1 By
solving this equation, 4 is found for the value of z. But we are
prepared to find that 4 does not satisfy the given condition, be-
cause one of the steps of the solution (squaring both members)
was not reversible.

202. Exercise in Reasoning in Equations.

1. Prove that cubing the members of an equation introduces
a new factor with new roots.

2. Solve 22V2?+3—22Va2?+ 2 =1, and verify.
r—3 8 2 8—6zx4d

5 2 = z*

3. Solve

, and verify all the roots.

br—a T 42x—2a 4x—0a .
4. Sol = 1. .
olve P +a:+b ota + P + Verify

5. Solve 2V#@ + 5o+ 19 =(z+ 3)(V=3—1). Verify.

SuecrsTiON. Solve also same equation with z + 3 as right member.

203. Systems of Equations. We saw in §§ 44, 45, that a set
of two given equations might be replaced by one new equation
and one of the given equations, or by two entirely new equations.

An equation obtained by adding the members of two equations, or
by adding after each equation has been multiplied through by a known
quantity, can take the place of either of the given equations.

Thus, if $=8and T=T,then §4+T=8'+T;
also if $4+T=8+T7T,and §=¢§', then T=T.

If $ =29, then a8 =a$' and if T=T" then bT =0T, where a
and b are supposed to be known quantities.

Then, a8 + bT =a8'+bT". Also if this equation and either
of the given ones hold true, the remaining given one holds true.

But in simultaneous quadratic equations all kinds of changes
were made in the given equations in the processes of solution.
Hence the plan of verifying roots found in the original equation
or equations should be regularly followed. ’
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II. THEORY OF QUADRATIC EQUATIONS

204. Relation between the Coefficients and Roots in Quadratic Equa-
tions.

1. Every quadratic equation containing one unknown number
may be reduced to the form #* 4 px + ¢ =0.

This can always be accomplished by

(a) Clearing of fractions, when fractions appear;

(b) Transposing all terms to the left member ;

(c) Collecting, and, when necessary in literal equations, factoring
2% out of two or more &* terms and x out of two or more x terms.

(d) Dividing the equation through by the coefficient of a*.

Because any quadratic equation can be reduced to the form
'+ px 4 ¢=0, we will study this type of equation.

2. Solve the following eight typical equations, all except the
last two by the factoring method.

() &*—52+6=0. (2 #+52+6=0.

@) ?*—2—6=0. 4) ?+x—6=0.

() *—42+4=0. 6) *—2z=0. ¥=2X=%
(7) #—2x—6=0. ®) #—2z+6=0.

3. Questions on the preceding solutions. A careful study of
the solutions of the preceding equations raises the following
questions :

(1) What number of roots has every quadratic? 7

(2) What relation exists between the coefficient of 2 and the
sum of the two roots of the equation ?

If the student has trouble answering these questions, he should
study §§ 98, 99 anew.

(3) What relation exists bet-veen the known term in the equa-
tion and its two roots? " T

(4) If all the terms of an equation are positive and its roots are
real, what can you say of the signs of the roots ? (-
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(5) If all the terms of an equation are positive except that
containing x, and its roots are real, what can you say of the signs
of its roots 2\, \\n {—)

(6) If the known term of an equation is negative, what signs
have the two roots ? /‘\.30\,\6(—)

(7) If the known term and the term containing x of an equa-
tion are both negative, which is numerically greater, the positive
or the negative root ? If the term containing = is positive instead
of negative, which root is numerically greater ? L pw.

(8) If the known term of an equation is absent, what value
has one of the roots in every case? (O See b 4220

(9) If the left member of the equation whose right member is
zero is a perfect square, what can you say of the relative size of
the tworoots ?  artvede b4 L X t3 o el

(10) If the known term is positive and greater than the square
of half the coefficient of #, what will invariably be the character
of the roots ?

The question arises, can we prove the answers to the preceding
questions true in general ?

4. Proofs concerning the number, sum, and product of the roots
of a quadratic equation.

To prove these theorems we w111 first solve the equation
@'+ pr+q=0.

4o fdpr——dyq. (Hindu Rule.)
42+ 4pe4pi=p'—4q. (Completing square. Ax.?)
2z4p=Vp—4q. (Ax.?)

x=—,}pi }Vpi—4q (Ax.?)

(1) Taking the sign before the radical as positive, we get one
root, and taking it negative we get a second root. Thus, there
are two roots to a quadratic equation.

(2) Prove by adding the two roots just found, viz.,
—{p+§Vr—Lgand —}p— Vi —1g
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that the sum of the roots of any equation equals the coefficient of x in
the given equation with its sign changed.

(3) Prove by multiplying one of the two roots just found by
the other, that their product is g, that is, prove that the product of
the roots is always equal to the known term in the left member.

The student may now verify that this tmth holds in Exs. (7),
(8) in 2 above.

a. It must be borne in mind that the theorems in (2) and (3) just proved
hold true only when the coefficient of z2 i8 unity; or when the equation has
the form 234 px + ¢ = 0.

b. In the study of the quadratic which follows, the expression,

Vp¥—4g, or p*— 4 q, (or b — 4 ac),

takes a prominent place. The quantity p? — 4 q is called the discriminant
of the quadratic, because by it we can tell all about the roots of the equation,
as to whether they are equal, rational, irrational, imaginary, or one of them
is zero ; also as to their signs, in certain cases.

(4) If p and ¢ are both positive and p® >4 ¢, making p’ 4q
positive, then v/p?—4 ¢ is real. Then both the roots are real.
We see that both roots are negative; since —4p+iVvp*—4gq
is negative whether the sign before the radical is 4 or —, because
3$Vp*—4q is numerically less than 4 p; it is numerically less
than 4 p, because if p? is diminished by 4 ¢ and then the square
root is extracted, the result is less than p.

(5) If p alone is negative and p? >4 q, then —} p is a positive
quantity. Also, as before, L p>4Vp*—44q. Hence, both roots
are positive.

(6) If ¢ is negative, p*—4q is positive since p? itself is
positive, and if ¢ is negative the term — 4 g becomes positive.
Notice also that in this case }Vp*—4¢> 1p. Hence, when the
sign before the radical is positive, the root is positive; and when
it is negative, the root is negatlve

(7) Ifq=0, —}p+3Vp'—4¢=0. Hence, one root is 0.
8) If p*—4¢=0, or ¢g= <2> the two roots are equal, each
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2
being —4 p. Notice that when ¢ =(1-2’-) , q “completes the square ”

and makes the left member a perfect square.
(9) If ¢ is positive and p* < 4 g, both roots are imaginary.

TABULAR DISCUSSION OF 22+ px +¢g¢=0

I p2>4q (1. p>0, ¢>0 | Both roots negative
2. p<0, ¢>0 | Both roots positive
8. p>0,q<0 | Pos. root (numerically) < neg. root
4. p<0, ¢<0 | Pus. root (numerically) > neg. root
II. p2=44q | 1. p>0 Roots both negative and equal
2. p<o0 Roots both positive and equal
III. p2<4q Roots imaginary
IV. p=0 1. ¢<0 Roots equal numerically but opposite in
sign
2. ¢>0 Roots imaginary
V. ¢<0 Roots always real

205. Exercises in telling the Character of the Roots of Quad-
ratic Equations. If the equation is not given in the form
o* 4+ pz + ¢ =0, change it to that form. First apply the test
g < 0; then, if necessary, p* —4 ¢ > 0 test to see if the roots are
real. Then tell by the coefficients the character of the roots as
explained in the preceding article.

1. 24222 —-75=0. 2. 5224 20 x=25.

8. ¥—62=0. 4, m’—§w=32.

5. 42* +15=16 . 6. 14+92% =6z
7. 282 +45=102" 8. 32’4+8x4+3=0.
0. @—1)@—2)=1. 10. 22— 112+16=0.
11. 62°—352—6=0. 12. 4224122411 =0.
1. Z424365_, 14. @+4)7=8z+ 2.

9 3 ¢
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15, 22+1_6_2—8 16. 2 4+ 3 _4

1-22 7 2 2241 -3
206. Graphical Explanation of real and different, real and coin-
cident, and imaginary roots of the quadratic.
1. Solve by the method of § 131 the three equations.
4 4+42—-3=0,
42 +424+1=0,
422 4+42+4+2=0.

In the diagram in the margin
which contains the solutions of
all three equations we see that
the roots of 42*4+42—3=0,
are real and distinet; the roots
of 42* +4x +1 =0, are real
and coincident, the changing of
the value of the kuown term

causing the straight line graph to move to the left until the
straight line is tangent to the curve and the two roots of the first
equation have come together ; and the roots of 42 +4x+4+2=0,
are imaginary, the straight line never meeting the parabola at all.

2. Solve by the method of § 131 the following equations, using
one diagram for all :

#—2+1=0, #—22+1=0, @ —3z4+1=0,
P24324+1=0, ®+224+1=0, ?+x4+1=0.

ExpLANaTION. Notice in this case that all the straight line graphs go
through the point (0, — 1). The first does not intersect the parabola, the
second is tangent to it, giving coincident roots, the third intersects it in one
point and would intersect it in another if both were extended. The other
three equations give corresponding lines on the other side of the y-axis.

a. Parameters. The student is asked to observe that in Ex. 1, the known
term changed and the other two remained the same, which had the effect of
keeping the graphs parallel. In Ex. 2, by letting the coefficient of 2 change,
and the other terms remain the same, the graphs became rays going out from
(0, —1). When one of the coefficients of an equation is allowed to change
in this way it is called a parameter,



THEORY OF QUADRATIC EQUATIONS 225

0 a0
a 0o

1. If the numerator of a fraction changes in value ard ap-
proaches indefinitely closer and closer to 0, while the denominator
remains the same, or is constant, the fraction dlso approaches in-
definitely close to 0 in value. In this way we are led to write
0

a .

. 207. The Symbolical Forms,

2. If the numerator of a fraction remains constant and the
denominator decreases indefinitely towards 0, the value of the
fraction evidently increases indefinitely in value. Hence with
this understanding, and denoting this quotient by oo, we can write

g’:w.
0

3. If both numerator and denominator decrease indefinitely
towards 0, and we have no means of knowing their relative values,

then the value of the fraction g is indeterminate.
a. We have already observed that division by 0 has no meaning. But
the above ‘‘forms’’ are convenient and are used by mathematicians. Per-

haps the best way to view them is to think of 0 as denoting the limi¢t towards
which a variable is approaching.

Thus, (3):0 is to be understood as a short form of stating that the limit
towards which a_g tends, when x approaches the limit 0 is 0.
To show that g has different values or is * indeterminate '’ we may write,

“’_1=g=z+1=2(wheux=l);

z—1
2—4_0_,12=4(whenz=2).
z—2 0

208. Further Discussion of the Quadratic.
If az® 4 bz + ¢ =0 is solved, the roots are

—b+ Vo —dac,

2= %2a
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—b4b_ o g =b=b_ D

2a 2a a

2. Ifa= 0, and —b+ VB —dac#0, 2=

3. Ifa=0,and —b+ V& —4ac=0, « is indeterminate.
- To understand these results the symbol = should be used.
Thus, a =0 means that a is an infinitesimal quantity which
approaches indefinitely close to 0. The symbol = is read “ap-
proaches the limit.”

1 Ife=0,2=

Using this sign, we have:

(1) If c=0, 220, or 2= — 2.
a .

@) Ifa=0,and —b+ V¥*—4ac+0,2=co
) If a=0,and —b + Vb*—4ac =0, x = indeterminate.

III. DISCUSSION OF PROBLEMS

209 The Courier Problem, often given in texts, is well adapted
to illustrate what is meant by “the discussion of a-problem.”
It gives rise to a simple equation.

1. A and B travel in the same direction at the rate of @ and b
miles per hour respectively. A arrives at a certain place, K, at a
certain time, and B arrives at L, which is ¢ miles from XK, d hours
after (or before) A was at &. In how many hours from the time
A was at K will they be or were they together?

SorurioN. Let z = number of hours from time A was at K until one
passes the other at M.

K ¢ L M
. Then, KM =ax; LM = (x—d)b;
and ax =c + (x — d)b.
Solving, az — bx = ¢ — bd.
1:9_—.Ld. Ans.
a—>b

1. Suppose a > b and ¢ > bd. Then z is positive, which shows
one carrier overtook the other after A was at K, both traveling in
the direction K to M.
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During the d hours before B reached I he traveled dd miles.
But, by supposition, bd < c. Thus, when A was at K, B was be-
tween K and L. Since A travels faster than B by supposition,
he will catch up with B at some place to the right of where B was
when A was at K. But we do not know whether M is to the
right of L as represented in the diagram or to the left of it.

We have, LM = (a:—d)b:(‘ia___b_d)b ﬁw)_b

If, now, ¢ > ad, then LM is positive, and M lies to the right of
L as we supposed and so represented in the diagram; but if
¢ < ad, then LM is negative, and M lies to the left of L.

Notice, if ¢ is supposed greater than ad, it will take A more
than d hours to reach L, and he will pass B at a point to the
right of L; but if ¢ is less than ad, A will catch up with B be-
fore the d hours are up, that is, before B reaches L.

II. Suppose a > b,but ¢ <bdd. This makes the value of x nega-
tive, which shows A passed B before he reached K.

III. Suppose a<b, and ¢ >bd. This makes = negative and
shows that B passed A at a point to the left of K. In this case
B travels more rapidly than A and will reach K before A does.

IV. Suppose a <b, and ¢<bd. This makes = positive and
shows that B overtook A to the right of K. In this case B travels
more rapidly than A and was behind A when he arrived at K.

V. If c=bd, then 2=0. In this case A and B are together
when A is at K.

VI. If a =0b, and ¢+ bd, then x=c. Here A travels as fast
as B and one is behind the other. The former will never catch
up with the latter, or, as mathematicians say, he will catch up
with him at infinity.

VIL If a=b, and ¢ = bd, then m:%. In this case A and B

are together at K, and, walking at the same rate, they stay to-
gether. Thus,  can have any value.
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2. Prepare a corresponding discussion of this problem on the
supposition the couriers A and B travel in opposite direction
instead of the same direction.

8. Change the conditions of 1, by supposing that A arrives at
K d hours after B arrived at L, both traveling in the same
direction.

210. Clairaut’s Problem of the Lights leads to the solution of a
quadratic equation.

a— % B

Two lights at P and @ are a feet apart. It is required to find
the points in AB which are equally illuminated by the two lights.
Let C be one such point, = feet from P.

By a law of optics the intensity with which a light shines at
any outside point is inversely proportional to the square of the
distance from the point to the source of the light.

Let .m? =illumination by light P one foot from P,

and n?=illumination by light @ one foot from Q.

2
Then the illumination at C from P is ™ and from Qis (_a_E’T)’ .

z
2 2
Hence LA Sa—
Ho% 2  (a—x)? _
m n
m_ (Root Ax.
z ia—a: *)
.*. MA@ — ME = + NE, Or ML + NT = M,
giving -,
m+n

1. What does the double sign in the value of = teach as regards
the number of points of equal illumination ?

2. If + in the value of z is. taken, what kind of a fraction

is

m_, proper or improper ? Where then is C with reference
n

to Pand Q? Between them or on one side or the other?
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8. If — in the value of  is taken, and » < m making the value

of the fraction positive, what kind of fraction is proper

m—n
or improper? Is the corresponding value of « greater or less
than PQ? Where then will this point of equal illumination be
located ? - '

4, If — in the value of « is taken, and » >m, what sign has
value of #? In which direction from P will the corresponding
point of equal illumination lie ?

We see, then, from the preceding that there are always two
points of equal illumination, one lying between P and @, and
the other either to the right of @ or to the left of P depending

on which is the stronger light.
ma ma

5. If m=mn, =g or o Thus, one value of z=1}a,

locating ¢ midway between P and @, and the other point is at oo.

6. If a=0, and m =n, m=g , which is indeterminate. Thus,

if the two lights are together and one is as strong as the other,
they will illuminate every point equally.



PART III. ADVANCED ALGEBRA

CHAPTER XIV

THEORY OF EQUATIONS AND SOLUTION OF HIGHER
EQUATIONS

I. ROOTS AND COEFFICIENTS

211. Relations between the Roots and Coefficients of Equations.

In § 204, we learned that in a quadratic equation whose right
member is 0, and whose coefficient of x* is unity, the coefficient of x
with its sign changed equals the sum of the roots, and the known
term equals the product of the roots.

Solve the following by § 100 and test the foregoing rule:

2—6x4+8=0; 22— (a+ b)xr+adb=0.

The question arises, — what corresponding relations exist for
equations of higher degrees ?

In § 103 it was shown that to construct an equation whose roots
are given, each root is subtracted from x, the remainders are mul-
tiplied together, and the product is set equal to 0.

1. Construct the equation whose roots are a, b, c.

SorutioN. (2 —a)(x—b)(x —¢) =0.
Performing the multiplications indicated and arranging the result accord-
ing to the powers of x we have "

— (a+ b +c)x?+ (ab+ ac+ bc)x—abc_o Ans.
(The student should perform these operations in full.)
2. Construct the equation whose roots are a, b, ¢, d.
SoLutioN. (x —a)(x—bd)(x—c)(x—d) =0,
230
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or, 2 — (a+ b+ c+d)xd+ (ab + ac + ad. + be + bd + cd)x?
— (abe + adbd + acd + bed)x + abed = 0.  Ans.

3. In the two preceding exercises, we see that when a complete
equation (§ 216, 2), such as x"+ P&+ a2+ pgr* 3+ o +p,=0,*
has 0 for its right member, and 1 for the coefficient of the highest
power of the unknown :

(1) The coefficient p, of the second term with its sign changed
equals the sum of the roots.

(2) The coefficient p; of the third term equals the sum of all the
products of pairs of the roots.

() The coefficient ps of the fourth term with its sign changed equals
the sum of all the products of the roots taken three together.

(4) The coefficient p, of the fifth term equals the sum of all the
products of the roots taken four together.

It can be shown by taking equations of higher degrees that (1),
(2), (8), (4), just given, hold generally for all equations, and that
the sizth coefficient py with its sign changed equals the sum of all the
products of the roots taken five together, and so on. Observe the
change of sign noted for the second, fourth, sixth, ete., coefficients.

a. The coefficients of the equations in Ex. 1-2 just given are symmetric
functions (§ 62) of the roots, since any two roots can be interchanged without
altering the value of the coefficients.

212. Constants and Variables. A constant is a quantity whose
value does not change throughout a discussion. A variable is a
quantity which is regarded as changing in value and passing
through a series of values, generally a continuous series; as, for
example, the values of « and y for the continuous series of points
of a graph.

Constants are of two kinds: absolute, as 1, 6, =; and arbitrary, as
a, k, m. Usually variables are denoted by the last letters of the
alphabet and arbitrary constants by the others.

* We begin here to use the con venient suftix notation, which locates the position
of coefficients by their suftixes. Thus, p; (the second coefficient), one number, is
followed by pg (the third coefficient), another number, and so on. Notice that
there are n+1 terms in the equation 27+ p;zn—1+ pgen—2+- ... 4-p, =0, and
hence the last coefficient is pn.

COLLINS’S ADV. ALG. — 16
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213. Functions and Notation for Functions. We have seen, § 148,
how as one quantity changes, another depending on it, called the
dependent variable, also changes. Now if two variables are so re-
lated that to every value of one of them there corresponds a definite
value of the other, the second variable is called a function of the
first. .

Thus, the circumference of a circle is a function of the radius,
and the area of a circle is another function of the radius. The
-distance a body falls by gravity is a function of the time.

Any expression containing , as 3 2? 4+ 2 « + 5, is a function of
z, since if @ changes the expression also changes, and its value
can be found corresponding to any given value of . 4

In studying the theory of equations it is very convenient to
have a notation to denote any “polynomial in 2” (§ 9). Mathe-
maticians commonly use ¢ f(x),” or «“ F(x)” (read “function 2”)
to represent any such function of « expressed in the different
powers of z. Thus,

Q) f(x)=ax"+ b2 +cxr i dor3+ oo + R+ 1
or, (2) f(z) =a"+pa~ ' +par i+ pa P+ o +p, @+
in which = is a positive integer and the coefficients can have any
values except that all cannot equal 0 at the same time.

Either of the equations (1) or (2), f(x) =0, is called the general
equation in one unknown. Notice that (1) f(x) =0 can always be
changed into (2) by dividing through by a.

Heretofore letters used have denoted numbers. Thus, f(z)
would have meant f x . To let f(x) denote any polynomial in
z is a new use for a letter followed by a parenthesis.

If f@)=42+222—42+7;
then f@)=4a*+2a*—4a+T;
and . f(—3)=4(—3)P+2(—32—-4(—-3)+7=-"T1

We may say that by the symbol f( ) is meant a form into
whose blank spaces any quantity can be placed.

_ Thus, if FC)=5()=-3( )+2
then f(m) =5m* —3m? + 2,
and f(p+9=5(+9' -3(p+9*+2
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II. REMAINDER THEOREM

214. The Remainder Theorem. If f(x) is divided by ¢ — a, the
remainder is f(a).

This theorem states in mathematical language that if any poly-
nomial in x is divided by x — a, the remainder is the same as the
result obtained by substituting a for x in the given polynomial.

Thus, if 2?4 72 — 11 is divided by « — 4, the remainder equals
the result of substituting 4 for  in 2 4 72 — 11. Test this.

1. Proof of the Remainder Theorem. Let @ be the quotient and
R the remainder when f{z) is divided by # —a, the division
being continued until x is no longer found in the remainder.

Then, f@)=Q(x—a)+ B  (Because dividend=divisorx
quotient + remainder.)
This equation holds true no matter what value « has. (§ 1)
Substituting a for # in this equation, we get,

f(@)=R (Since @ (a — @) =0.)
which was to be proved.

" ExaMpLE. Show that the remainder obtained by dividing 8 28+ 7 22—6x+6
by z — 3 equals the number obtained by substituting 8 for z in the given
dividend, or 136. Similarly, show that 2 y* — 3 y2 — 7 divided by y + 2 (or

— (—2)) gives for remainder 2 (— 2)* —3(—2)2—7, or 13. Make divi-
dends and divisors at random and test the truth of the theorem until it is
well understood.

2. Factor Theorem. Corollary of Remainder Theorem. If a isa
root of f(x) =0, then f(x) is exactly divisible by x— a; and con-
versely. (See § 23, VIL)

For, if a is a root of f(x) =0, that is, if f(a) 0, then the
remainder when f(x) is divided by  — a is zero, (by the remainder
theorem), and f(x) is exactly divisible by z —a.

Also, conversely, if f(x) is exactly divisible by # — a, then the
remainder equals zero, that is, f(a) =0. But, if f(a) =0, then
a is a root of f(z).

ExampLe. Of the equation 22 —65x—86=0, 9 is a root, since
92 — 6 x 9 — 86=0: show by division that 22 — 5 = — 86 is divisible by = — 9.
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215. Number of Roots of an Equation. Every rational integral
equation, f(x) = 0, of the nth degree has n roots and no more.

To prove this we have to assume the truth of what has been
called the fundamental theorem in algebra, viz.:

Every equation of the form ax"+ bx* '+ ca* 24 .o« +kx4+1=0
(in which n is a positive integer and a, b, ¢, etc., may have any
values, real or imaginary, except that a cannot equal 0, since then
the equation would be no longer of degree n), has a root, either real or
imaginary. '

This theorem was proved first by Gauss in 1797. Its demon-
stration will be found in treatises on the theory of equations.

Proor. If f(x)= 0 has a root, 7y, then J(z) is divisible exactly by x — r,
(§ 214, 2). Calling the quotient f(x), we have f(x) = 0, since the equation
is satisfled with either factor equal to 0 (§ 105). Now f;(x)= 0, by the fun-
damental theorem, also has a root. Call this root r;, and divide fi(x) by
x — 1o, getting f2(x). Then, fy(x) =0 as before.

Evidently this process can be continued as long as z is still found in the
quotient. Now ax® + ban-1 4 cxn—2 4 ... + kx + I divided by x — », gives a
quotient of the form axn—14d'xn-24 ... 4 k'z + 1. This quotient divided
by z—r; gives a quotient of the form axn—24-b"xn—8+4¢/'xn—44 ... +k''x41',
and soon. It is clear from this that there are » such divisors as x — r;.
Hence

J@=a@x—n)(@—r)(x—13) - (x—1,) =0.

This equation is satisfied by ,, ,, 74, +++ 7,, or has n roots.

Suppose it has still another root, 7, ,,, different from any of the
preceding. Then

A(Topr — 1) (Tapr — 12)(Tagr — 73) ++* (Taya — 7)) =0,
But, by hypothesis, since r,.,#7,(i{=1, .-+ n), none of these
factors can equal 0, and therefore their product cannot equal 0,
(because a product cannot vanish unless one of its factors van-
ishes,) and the equation is not satisfied. Hence the equation can
have only n roots.

a. Notice in the theorem at the beginning of this article that it is said
J(x)=0has a root. This statement applies to f(z) as given in § 213, (1).
There are what are called impossible equations which have no roots if the
signs of their radicals are taken in certain ways. (See § 200, 8.)
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III. DESCARTES’S RULE OF SIGNS

216. Descartes’s Rule of Signs. A variation of sign in a polyno-
mial quantity occurs when a minus term follows a plus term, or
when a plus term follows a minus term.

Thus, 3a* — 7 2*+102*+ 5 —7 has three variations of sign.

In #—a =0 there is one variation of sign, and evidently one
positive root; in # 4 @ = 0, there is no variation of sign and no posi-
tive root. In #*—7 x4 12 =0, there are two variations of sign
and two positive roots; in a? — 2 — 12 = 0, there is one variation of
sign and one positive root; in 2?47 2 4 12 = 0, there are no varia-
tions of sign and no positive roots. Observing these relations,
Descartes was led to find a proof (not given here) of the following
theorem :

1. Rule. The number of positive roots of the equation f(x)=0
cannot exceed the number of variations of sign in its left member;
and the number of its megative roots cannot exceed the number of
variations of sign in f(— x) =0.

Thus, 6 #* — 7Ta*— 22+ 4 =0 cannot have more than two posi-
tive roots since it has only two variations of sign.

2. Incomplete Equations. An equation in which no power of
the unknown from the highest down is missing is called a com-
plete equation (§ 94). An incomplete equation can be made for-
mally complete by inserting the missing powers each with a zero
coefficient. ‘ ‘

Since terms with zero coefficients do not affect the equation one
way or another, we can give all such terms the sign of the preced-
ing term. In this way we see that the formally complete equa-
tions (or those with zero coefficients) will have the same number
of variations as the corresponding incomplete equations.

Thus, Descartes’s rule holds for incomplete as well as for com-
plete equations,

3. Limit of the Number of Negative Roots. If — xis put for« in
any equation, its negative roots become the positive and its posi-
tive roots the negative roots of the derived equation, without any
change occurring in the numerical magnitude of the roots.
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Thus, —z for # in #* — 32— 10=0, gives #* —(—32)—10=0,
or*4+3x—10=0. The roots of the first equation.are 5 and
— 2, and those of the second are —5 and 2. (§98.)

If an equation has the signs of its roots changed by substitut-
ing — z for , and if the new equation is tested for a possible num-
ber of positive roots, the answer evidently will be the limit of
the number of negative roots of the original equation.

Substituting — « for @, it is clear, will change the signs of the
terms containing odd powers of z only, and will leave the terms
containing even powers unchanged.

217. Exercise in the Use of Descartes’s Rule of Signs. The
student must clearly understand, at the outset, that Descartes’s
rule does not tell how many positive and how many negative
roots an equation has, but merely gives limits to these numbers.

Thus, #* — 6 2 + 12 =0, according to Descartes’s rule, cannot
have more than two positive roots. As a matter of fact, it does
not have any, since one root is — 3 and the others are imaginary.

Find the greatest number of positive roots and of negative roots
possible in the following equations. Check the answers by solving,
when this is feasible.

1. 2—5246=0.

SorLuTion. This equation has two variations of sign and therefore may
have two positive roots. Putting — « for z in the given equation, we have
22 —(—bz)+4+6=0, or, 22 4+ 6z + 6 = 0, which has no variations of sign,
and therefore no negative roots. Consequently the given equation has no
negative roots. Evidently the roots of this equation are 2 and 3 (§98).

2 2—Tx+4+12=0. 3. ©2—424+3=0"
4. ©*—62+10=0. (§ 100, § 83.) 5. 224+62+10=0.

It is known that the roots of the following equations are all
real. How many are positive and how many are negative ?
6. *—2522+602x—36=0. 7. *—T2*+172*—172+46=0.
8 #*—3x—2=0. 9. ©* 412224+ 452450=0.
10. #*—5x—-3=0. 11. 42¢—42°—132*4+182—6=0.
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Find the maximum number of positive roots in each of the fol-
lowing equations; also the maximum number of negative roots;
also information concerning imaginary roots if any can be inferred.

12. *4+32x—-56=0. 13. 2 —-T2+11=0.

14 #2—Tx—-36=0. 15. ©*—422—-5=0.

16. 2> +1=0. 17. 2 4+322—524+1=0.
18. #®+ 224+ 1=0. 19. P +22+1=0.

20. Determine the character of the roots of «*+4 =0.
21. Show that 2®*—3 2#?=4 x—5 has at least two imaginary roots.

IV. SYNTHETIC DIVISION

218. Synthetic Division. It frequently happens that it is nec-
essary to calculate the value of f(x) when some value is assigned
to . Thus, if we were plotting y= f(x), we should have to
assign values, say, 1, 2, 3, 4, ... to # and find the corresponding
values of f(x), or y. Now, by using the Remainder Theorem,
§ 214, the operation can be systematized and greatly shortened.

1. To calculate 52 —7 2> —34 £ — 4 when 2= 3.

SoruTiOoN. By § 214 the value sought is the remainder obtained when
the given quantity is divided by x — 3. But such a division is a very special
form of long division, the divisor being a binomial with its first term always
z. Such divisions can be shortened still more than ordinary contracted
divisions (§ 20, Ex. 47).

1. Long division II. Same division contracted
528 — 72242 —4|z—38 6— 7-84—4[—3
5% — 1523 |bxt+ 82— 10 — 16— 24 4+ 30
822 —842x Quotient: 56 + 8 — 10 — 84 Remainder. Ans.
822 — Uz ' III. Same division as II, but with
—10x— 4 — 8 changed to + 3 and the sub-
—10z+30 tractions to additions.
— 384 Ans. 6— 7T—84—4|+3
16 4 24 — 30

Quotient: 56 + 8 — 10 — 84 Remainder. Ans.

ExpLaNATION.  In the contracted division, IT, only that part of the long
division, I, is retained which is essential, namely, the part in black-faced
type. Evidently the light-faced figures in I merely duplicate thos: already
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set down in the solution, and the letters can all be omitted. The products
of the second term of the divisor and the several terms of the quotient are
written directly under the corresponding terms of the dividend.

Notice, in the last form, III, that 16 comes from 8 x 5; + 8 from adding
— 7 and 15; 24 from 8 x 8; and — 30 from 8 x — 10.

Compare the quotient and the remainder of the long division process with
the last lines of II and III, viz., 5 4 8 — 10 — 384.

From this example we construct a rule for finding numerical values :

2. Rule for Synthetic Division. (1) Arrange the polynomial ac-
cording to the descending powers of x, and, omitting all the s, write
" only the coefficients with their signs, supplying the coefficient + 0 for
every power of x missing; also + O for the known term in case it is
missing ; then, in the position of divisor, place the number substi-
tuted for x.

(2) Multiply the coefficient of the highest power of = in the given
quantity by the number substituted for z, placing the product under
the second coefficient, and add this column algebraically.

(8) Newt, multiply sum thus found by number substituted for z,
placing the product under the third coefficient, and add as before.
8o continue till all the coefficients are used. The last sum is the
value of the polynomial when the given value of  is substituted for .

(4) The numbers preceding the value sought on last line are the co-
efficients of the quotient, whose.degree is one less than that of dividend.

Evaluate the following expressions by synthetic division, and
also each time copy down the quotient obtained with the omitted
powers of & reinserted in their proper places.

8. - Ta’4+122—5, when =2,

4 -3 —2x—1, when z=4.

5. #*—6a*— 22411, when z=5."

SuceesTion. Write 1 +0—6 —2 411 |5.

6. 24112 — 17, when x =+ 2; also when 2 =— 2.

7. ®+3a* 422 -1, when 2=1; also when z=—1.
Find the quotients and remainders in following divisions:

8. (#*—6 2’+11 2—6)=+(x—2). 9. (#'+2*—2—1)+(2+5).
10. (4*—628—22—-T7)+(x—4). 11. (@P—a'462)+(z+3).
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V. TRANSFORHATIONS OF EQUATIONS

219. Construction' of an Equation whose Roots are severally the
same Multiple of those of a Given Equation. In § 216, 8, we saw
the signs of all the roots of a given equation changed by substi-

tuting — 2 for . In the same way by substituting ¥ for = we
r

get an equation with y for the unknown whose roots are severa;lly
r times those of the given equation, since if L X, Y =12
r
Thus, if m=%, #—3x—-4=0

becomes (%)2—3@})—4:0, or =9y —36=0.

The roots of the given equation, 2 — 3 # —4 =0, are evidently 4
and — 1, while those of the resulting equation, 3* — 9y —36=0,
are 12 and — 3, the latter pair of roots being respectively three
times the former pair.

1. Generalizing, let az® 4 b2+ cz*24 ... +kx+1=0 be an

equation of any degree, and in this equation put Y for . Then
r

y n y n-1 Y n—2 y
o) o)+ + 1) 410,
or ay" + byt eyt 4 oo 4k ly 4+ =0, (Mult. Ax.)

by raising each fraction to the power indicated, and then multi-
plying both members of the equation by ».
From this we see that the following is true generally :

2. Rule. 7o get an equation with roots r times those of a given
equation, first write the given equation in the complete equation form
with 0’8 for the coefficients of missing terms and with 0 for its
right member; then make the coefficient of the highest power of the
unknown in the required equation the same as in the given equation.

For the second coefficient of the required equation write the second
coefficient of the given equation multiplied by r; for the third coefi-
cient write the former third coefficient multiplied by r*; for the fourth
coefficient, the former fourth coefficient multiplied by r*; and so on.
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a. The word multiple of course includes submultiplées. Thus, a new equa-

tion whose roots are to be 1 respectively of those of a given equation, will
r

have for its second coeflicient 1 of that of the second coefficient in the given

r
equation, and for its third coefficient ,% of the third coefficient ; and so on.

3. Construct the equations which have respectively :

Roots 3 times those of #*— 62’ +112x—6=0.

Roots 2 times those of a®*+6x+4+7=0.

Roots } of those of a*+ o« —20=0.

Roots — 3 times those of a®—152*—14 x4+ 2=0.

Roots £ of those of ax®—bx+c=0.

4. Change the equation 32*—52'— 72 +412=0 into another
whose coefficient of 2? is 1 and whose other coefficients are integral,
by forming the equation with roots 3 times its roots.

'220. Integral and Rational Roots.

THrEOREM. If an equation of the form x"+ ax*™+ ba*-24 ...
+ kx +1=0, in which n, a, b, :-- are integers, has rational roots,
they are integers and factors of l.

Proor. Suppose that such an equation can have a root of the

form g in which p and q are integers but p is prime to ¢. Then,

(<) o) - sa(gprn
q q q q
or, p*+ ap*lqg+bp* g+ --- + kpg" '+ 1" = 0; (Mult. Ax.)
whence, ap* !4 bprig 4 o + kpg* 4 lgvl = — % ( I?luvb :’:i)

But the left member of the last equation is integral, since a, b,
«osy D, ¢, and n are all assumed to be integers, while the right
member cannot be integral, because, by our first supposition, p is
prime to ¢. Hence an equation of the form

o +axr bt e kx4 1=0,

cannot have a fraction for a root. If it has a rational root, such
root must be integral and a factor of I,
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Find thé real roots in the following equations, testing first for
the signs of the roots by Descartes’s rule.

1. *—22'—192+20=0.

SorLutioN. By Descartes’s rule this equation may have two positive
roots and one negative root. We try in turn, by synthetic division, the di-
visors of 20, viz., + 1, +2, +4, + 5, + 10, 4- 20. If we write down the
coefficients of the given equation, we can perform the synthetic divisions
mentally. Since 1, — 4, and 6 give 0 for remainder in each case, these
numbers are the roots sought.

2. P-4+ x4+ 6=0. 3. P4+3y2—-22y—24=0.
4 2 —192—30=0. 5. #—825432'4322—28=0.

Find the rational roots in the following equations by first trans-
forming them to equations whose coefficient of the highest power
of the unknown is unity (§ 219, 4), and then solving for integral
roots. Use Descartes’s rule.

6. 22— Ta’+16x—15=0.

SorurioN. If we form the equation whose roots are twice those of the
given equation, it is clear that 2 will be a factor of every term of the new
equation and can be removed, thus making the coefficient of the highest
power of z unity, and the rational roots integral by § 220, Theorem.

By the rule of § 219 we have for the transformed equation :

. 228 — 14224642 —120=0,
or, 28 —Ta2 4822 —60=0.

By Descartes’s rule this equation can have no negative roots. Trying 1,2,
3, 4, etc. in turn, by synthetic division, we find that 8 is a root. Then § is a
root of the given equation.

7. 202 —1562°+430—45=0. 8. 42*— 1524332 —18=0.

221. Decreasing all the Roots of an Equation by the Same Amount.

1. Let 2*— 72— 18 =0 be a given equation, whose roots are
9 and — 2; to find an equation whose roots are less by 3 than
those of this equation; that is, whose roots are 6 and — 5.

We wish the new unknown y to be equal to z — 3, so we put x =y + 8 in
the given equation, y thus becoming the unknown in the new equation. Then
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(W+38)2—-7y+3)—18=0, or y2—y—30=0.

The roots of the last equation are evidently 6 and — 5, or respectively 3
less than the roots of the given equation.

2. Let f(2) = ax® + ba® 4 cx + d = 0 be regarded as an example
of an equation of any degree having any coefficients.

If, as in the preceding example, we substitute y + m for z, the new equa-
tion containing y for its unknown will have its three roots each less by m
than those of the given equation. We have

Msfy+m)=aly+mP+do@+mi+c@y+m)+d=0,
or, @) fy+m)=ar+ Bam+b)y2+ (Bam? +2bm + c)y
+amd+bdmi+em+d=0,
or, (3) f(y+m)=ay+ by +cy+d =0,
by substituting b’ for 8am + b, ¢’ for 8am?+2bdbm +c¢, and d' for
am® + bm? 4 cm + d, to save writing the long expressions.

We now reverse the operation used to derive equations (1), (3), and sub-
stitute in (8) z for y + m, and x — m for y, thus coming back to the equation
J(x) = 0 with which we started, arranged, however, in a new form. In this
way we get ‘

@D fE)=a@—m)B+bd(x—m)?2+c'(x—m)+d =0.

We see, now, that if a(x —m)3 + b/(x — m)3 + ¢/(¢ — m) + d' is divided by
x — m, the quotient is a (x — m)2 + b'(x — m) + ¢/ and the remainder is d'.
If the quotient a (x — m)2 + b/(x — m) + ¢’ is divided by x — m, the quotient
is ¢ (x — m) + b’ and the remainder is ¢/. If the last quotient is divided by
z — m, the resulting quotient is ¢ and the remainder is b’. But these
remainders just found, d', ¢/, b/, are the coefficients of y in the new equation
(8) whose roots are to be each m less than the roots of the given equation.
Now a(x—m)2 + b'(x — m)2 + ¢/ (x — m) + d' =0 is, by equation (4), the
same as the given equation f(x) =0. Hence (since, evidently, the preced-
ing argument would apply to an equation of any degree) we learn :

8. To find an equation whose roots are each m less than those of
S(x) =0, divide f(x) by * — m, then the quotient by * — m, and so
on. The last quotient together with the several remainders taken in
reverse order are the coefficients of the desired equation, the last quo-
tient being the coefficient of the highest power of the unknown ; the last
remainder, the newt coefficient; and so on.

4. Reduce the roots of the equation 2* — 7 22 4 2z + 40 =0 by 3.
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SoLuTION
¥—Ta?+22x+40|2—38 W—-42-10|z—8 2z-1jz—38
28 — 822 2—4x—-10 22-32 rxr—1 x—81
—4224 22 . —xz-10 + 23
— 4224122 —x+4 8
—10x + 40 - 138
— 10z + 30
10

Hence, by rule p. 242, the new equation isz? 4+ 2 22 — 13z + 10 = 0.

Proor. The roots of this equation, by § 220, are 1, 2, — 6; those of the
given equation are 4, 6, — 2, or each is 8 greater.

In the solution just given long division was used. This can be
replaced to great advantage by synthetic division.

5. Find the equation whose roots are 2 less than the roots of
ot — 2 2® — 4 2* 4 & — 4 = 0, using synthetic division.

SovLuTIiON EXPLANATION

1-2-441- 4 |_2 Notice that 1, 0, — 4, — 7 on the third line are the
24+ 0—8— 14 coefficients of the quotient of the given function of z
1+40—-4—-7—18 divided by x—2 and the last term — 18 is the

24440 remainder. The work then shows 28 — 4 x — 7 divided
1+424+0-79 by x — 2, giving on the fifth line the coefficients 1, 2,
2+8 0, and the remainder, — 7. Next, 22 4 2 x is divided
1+448 by x — 2, giving on the seventh line the coefficients 1,
2 4, and the remainder 8. Last of all x + 4 is divided
1+6 by z — 2 giving the quotient 1 and the remainder 6.

Hence, the equation sought, which has for its coefficients the last quotient
and the several remainders, is 2t + 623 + 822 — 72— 18 = 0. Ans.
Decrease the roots of
6. ¥—T2+4+12=0by 2. 7. ®-22*4+82—T=0by 2.
8. 32+ 2x—-22=0 Dby 3. 9. ¥*4+32—-422+52=Tby3.
10. *4+42x—8=0by4. (§218,2,(1)) 11. 2*—22*+1=0 Dby 0.2.
12. Increase roots of #* + 22+ 5=0by 1. Suve. Divisor=—1.
13. Increase the roots of ! 422+ 5=0by 2.
14. Decrease the roots of 2*— 72+ 4 =0 by 0.07.
15. Decrease the roots of 2 —11.2 4 5= 0 by 0.004.

i
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222. Making the Sum of the Roots of an Equation Zero. In the
equation z" + pa"! 4 par*~t+4 .- +p,_ & +p,=0 the second co-
efficient, with its sign changed, or — p,, equals the sum of the
roots (§ 211, 8). Hence, if each of the n roots of this equation is
increased by 2, the sum of the roots of the new equation is 0,
and the coefficient of 2! in this equation is zero. (Used § 111,
IIT to remove «2)

223. Reciprocal Equations. If % is substituted for z in any
equation, the resulting equation will evidently have roots that
are the reciprocals of those of the given equation. Equations
that are not changed at all when this substitution is made are
called reciprocal equations. Their roots in pairs are reciprocals
of each other. See § 102, 11.

VI. COMPLEX ROOTS

224. Complex Roots. Complex roots, if they occur at all, ap-
pear in pairs in all equations, f(x) = 0, whose coefficients are real
quantities. This can be shown both algebraically and graphically.

1. .?lgebraic Proof.

Suppose a + bi (§ 83) is a root of ax® + b~ + ... 4+ ka4 1=0.

Substituting @ 4 bi for », we find that all the terms that con-
tain an odd power of bi are imaginary, and all the other terms are
real. Combining all the real terms into one quantity, denoted by
P, and all the imaginary terms into another quantity, denoted by
@i, we have:

P+ Qi=0.
But, by § 84, P=0, and @ =0.

Substituting a — b¢ for z, we get P — @i, as all the P terms
have the same signs as before, while every @ term has the sign
opposite to that which it had before, since odd powers of negative
terms are negative.

" But we have just learned that P=0, and @=0. Hence
P— Qi=0, and the equation is satisfied when a — bi is substi-
tuted for . Therefore a — bi is a root.
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2. Graphic Explanation.

245

To explain graphically why 1mag1na,ry roots appear in pairs,
we construct the graph for the equation y =2 — 32>+ 2 and

then the graphs for this equa-
tion modified by changing the
known term.

We have, for the graph of
y=a* — 3 2?4 2 the first figure,
at the right; for the graph of
y=a%—32?+4 the second fig-
ure, below ; and for the graph of
y=a"— 322+ 6 the figure on p.
246.

The graph of the first equation
crosses the axis of X, wherey=0,
at three points, which shows that
2*—3a?+4+2=0 has three real

roots, viz., = 2.74, 1, and —.74.
The graph of the second equation crosses the axis of X at one
point, z=— 1, and comes down and just touches the axisof X at

]

2=2., Thus,* —3224+4=0
has two equal roots, z =2,
and z =2, and the third root
r=—1

The graph of the third equa-
tion crosses the axis of X where
x=— 1.2, but does not cross it
again. In this case we see the
equation 2®—32?+4 6 =0 has
one real root 2 = — 1.2, and two
tmaginary roots.

Thus, the two real roots of

. the first and second equations

disappeared at the same time
and two imaginary roots took
their places.
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Notice that the three graphs
are exactly the same curve, but in
different positions with respect to
the axes of X and Y, the latter
curves being pushed upward from
the position of the first. .

a. Anequation of the nth degree
in x can cross the axis of X in no
more than n points, since an equa-
tion of the nth degree can have no
more than n roots. It may have
less than n real roots, in which case
it will cross the axis of X in less
than n points, or even in no points,
all the roots being imaginary.

Evidently the number of pairs
of imaginary roots is the same as
the number of elbows of the curve
that do not cross the axis of X.

b. We see in the example just
given the two ends of the curve

extending away indefinitely, the one above the axis of X to the right, and
the other below the axis to the left. It is evident that there is no need of
tracing these parts of the graphs in search of roots. This leads us to the next
topic, limits of roots.

VII. LOCATION OF ROOTS

- 225. Limits of Roots. A superior limit to the real roots of an
equation is a number greater than the greatest root. An inferior
limit is a number less (lower in the algebraical scale) than the
least root. A superior limit may often be found by grouping
terms so that each group contains only one negative term, and
finding a value of 2 which makes each group positive. An
inferior limit can be found in the same way after substituting
— 2 for z in the given equation.

ExamprLE. Find limits for the roots of 2t — 2522 4+ 602z — 36 = 0.
SoruTioN. (zt — 256 22) + (60 2 — 36)=22(x2 — 26) 4+ 12(6x — 3)=0.

Examining the last form of the equation, we see that x = 5 makes the first
quantity zero and the second a positive number. Evidently any greater
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number than 6 would make the left member positive and such a value of z

would therefore not satisfy the equation. By synthetic divisions we find

that 4 is a superior limit. .
Putting — x for z, and factoring as before, we have

a3(a? — 25)— 12(b 2 + 3) = 0.

Here the limit must be greater than 5. Trying 7 we see that it or any
larger number makes the left member positive. Hence 4 is a superior limit
and — 7 is an inferior limit to the roots of the given equation.

226. Location of the Roots of an Equation between Certain Limits.

If 2, when put for 2 in the equation y =f(x) makes y positive,
and #; when put for 2 makes y

negative (i.e. if the two remain- Y

ders from the two synthetic di-

visions are opposite in sign), (@ Y
then at least one root of f(x)=0

lies between x, and ;. ol

For, the ‘curve passing from
(x, %) to (x y;) will have to
cross the axis of X at least
once to go from a positive to a
negative value of y. Where it
crosses, the value of y is 0, that is, (z) =0. The value of = where

" the curve crosses the axis of X is the root sought.

Locate the roots of the following equation, first testing as well
as possible for superior and inferior limits of the roots so as to
find what range of values to assign to .

1. #—622—2242=0.

SovLutioN. Writing the equation in the form

22(x2 —6)+2(1—2)=0,
we readily see that 8 is a superior limit ; and, putting — z for x, we see that
— 8 is an inferior limit.

‘Writing y =f(x)=2t—622—22 + 2, we let x=—3, -2, -10,1,2,

8 in turn, finding the value of y in each case by synthetic division, and

arranging the results in the usual tabular form for a graph construction.
COLLINS’S ADV. ALG. — 17

.
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.

Sy~THETIC DIvIsIONS TABULAR RESULTS

I.140—-6— 24 2|—38 y=xt—06zx2—2x+2

—8+9— 9433
—8+3—11+85 _Aus (z, v) |Pr.
II. 140—-6—-2+2|—2 -
—24+4+4—4 I |(-3, 3)|a
—2—-24+2-8. Ans. —
. IIL. 14+0-6-2+2|—-1 I | (-2 -2)|b
—14+14+5—38
—1—-5+8—1. Ans. I | (-1,-1) | ¢

IV. 1+40-6-2+42|1 —

. 141-56~-1 (0, 2) d
1—-56—7—05. Ans.

V. 1+0-6-2+ 2|2 IV |( 1,-5) e
2+4—4-12 _
2—-2—-6-10. Ans. V| (2 -10)]r

VI.1+0—-6-24 2|8 o
3+9+9+21 .
3+347+88. Ans. VI|( 3 %) |9

GRAPH

An examination of the values in the table shows that the graph for these
values extends only a short distance to the right and left of the Y-axis, but
a considerable distance from the X-axis. The graph will be easier to construct
and more useful, if the unit for abscissas is taken longer than that for ordi-
nates. This can be done since the numbers expressing the crossing points on
the axis of X will be the same for any scale of abscissas. Let us take a
millimeter unit for ordinates and a centimeter unit for abscissas. In this
way we get the graph on facing page.

The graph shows that there are four places where the curve crosses the
axis of X, or four real roots. It is evident also that the branch ba extends
indefinitely upward to the left, and the branch fg extends indefinitely
upward to the right. This makes clear the value of finding superior and
inferior limits, since there is plainly no advantage in tracing the curves
beyond a and g.

The graph shows that one root lies between — 2 and — 3 ; the second root
between 0 and — 1; the third root between 0 and + 1; and the fourth root
between 2 and 3.

a. Between a value of x that makes y positive and one that makes it
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negative, may be found either one root or some odd number of roots. Thus,
between a and b in the diagram ene root lies ; between @ and f three roots lie.

Y

227. Approximate Solutions for the Roots of any Equations by
Means of Graphs. The graphic method can evidently be used to
solve any kind of equation, even the most complicated, as one
containing the unknown in exponents as well as in ordinary
terms, but this method may not give all the roots of all such
equations. After two points are located one on each side of
the axis of = and close together, these points can be located on
a new diagram on a much larger scale, covering only the region
about the points. This diagram will give a good approximation
to the root sought, provided only one root lies in this region.

Thus, if it is known by synthetic division that a root
of * — 62— 224 2=0 lies between (— 2.3, 2.84) and (—2.1,
—.81), a straight line joining these points crosses the axis of
xat —2.14.

But the curve bends a little to the left giving — 2.15. Syn:
thetic division shows that the root is — 2.15+.
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VIII. HORNER’'S METHOD

228. Horner’s Method of Approximation to the Roots of Equations
with Numerical Coefficients. This method is used when very
precise values of the roots are sought. Theé method consists in
first locating a root as lying between two integers, and then de-
creasing all the roots of the equation by the smaller integer;
next, in locating the corresponding root as lying between two
tenths in the new equation, and then decreasing all the roots of
this equation by the smaller of the two numbers of tenths; then,
in locating the same root as lying between two hundredths in
the last derived equation and decreasing all the roots of this
equation by the smaller number of hundredths; and so continu-
ing, as far as desired. In solving for negative roots, the signs of
all the roots are first changed by substituting —« for « in the
given equation, the process then being the same as that just
described.

1. Get, to two decimal places, a root of «®* —42* + x + 3 =0.

SorutioN. By substituting in y = 2% —42? + x4+ 3 (using synthetic
division), we find the values as set down in the table, and by locating these
on the diagram, we get the corresponding graph.

Y= 4224z +8

(= ¥)
(-1, -8)|a
(o 8|b
(1, 1lec '
(2 -3 |al
( 3-8 |e
(4 D5

Examining the graph we see by § 226 that there is a root between — 1
and 0, another root between 1 and 2, and a third between 8 and 4. We will
solve for the last, lowering the roots by 3
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1-4+1433
#2;—:% The equation with the new roots is therefore 3 + b 22
- 3 - s - +4x—3=0. The graph shows that x probably lies be-
ﬁ tween 8.3 and 3.5; so we will find the remainders, first
St 3 + for 0.3, and then for 0.5.
146
1+56 +4 -8 |3 1+6 +4 -8 |6
© .83+ 1.69 + 1.677 b +2.75 +13.376
1+ 5.8 +5.59 — 1.328 1+5.6+6.75+ 376

Thus, the sign of #3 + 522 + 4 x — 3 changes between « =.8 and z =. 5 and
as 1.323 > .875 the root is probably over .4. So we will lower the roots by .4.

146 +4 -8 |4 The new equation then is

4+ 2.16 + 2464 25 +6.22% + 8.48 % — .536 = 0.
1+6.4+616— .536

4+ 2,32 Since we are now to lower the root by hun-
14684848 dredths, those terms which contain the highest
4 i powers of z will have small values. We can there-
1+62 ) fore get a good approximation to value of by drop-

ping them and solving from the terms that remain.
Thus

8.48 x — .636 = 0 (nearly), or x = .08 +.

Let us now substitute .06 and .07 in 23 4 6.2 22 + 8.48 x — .536 and see if the
sign changes. If 8o, the root of this equation lies between .08 and .07.

1+62 +848 — .536/.06 1462 +8.48—.5386|.07
.08 + .376 4 .532 07+ 44+ .624
14 6.26 +8.86 — .004 14 6.27 + 8.92 + .088

Now we first decreased the root of the given equation by 3, then the corre-
sponding root of the new equation by .4. We see then that if we should
lower the corresponding root of the last equation by .08, the corresponding
root in the new derived equation would be very small. Hence 3.46+ is a
close approximation to the root sought.

a. It may be observed that from the graphic standpoint what we do by
Horner’s method is to carry the origin closer and closer to the position of the
root sought. Thus (in the above example) the axis OY was first carried
3 units to the right ; then 0.4 to the right. Evidently we could continue this
" process as long as desired. "
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229. Negative Roots. Complete Form of Solution by Horner’s
Method. :

To find negative roots by Horner’s method the given equation
is first transformed by substituting — « for 2. The new equation
is then solved for positive roots as in the preceding article. Such
positive roots of the new equation are evidently negative roots of
the given equation.

1. Find a negative root of 2* —3a? — 22+ 5 = 0.,

SorurioN. Substituting — x for z in the given equation, we get,

»+322—22—5=0.

This equation is to be solved for its positive roots.

It will be found by trial that £ = 2 makes the left member positive and
z = 1 makes it negative, so that a root lies betyeen 1 and 2.

MobEeL SovutioNn BY HORNER’S METHOD

1 3 -2 — 5 1.38006  Ans.
1 4 2
4 2 ‘ — 80000
L 5 2607
5 700 — 833000®
1 189 332337
600 889 — 66300000 | 0000(3)
8 _198 56435247 | 5126
63 - 108700 — 9864753 | 4875
8 __2079 .
66 110779
3 2088
680(H 11286700 | 0000®)
_3 849 | 5026
693 - 11287049 | 5025 .
3 349 |5 060
696 11287399 | 00759
3 .
69 | 9000
|8
69 | 9005
|5
69| 9010
5

'89 | 9015



HORNER’S METHOD 253

ExpLaNATION. In the solution p. 252, the lines for the synthetic divisions

- are not drawn across the page, and the work is carried on in one continuous

" process, that is, without rewriting the several transformed equations. The
second figure of the root .3 has to be found by trial as in § 228. A fair
approximation to the second decimal figure of the root is found by dividing
833 by 1087. (See § 228.)

Also in the solution p. 262, the decimal point does not appear except in
the answer. When tenths in the answer are reached, for each new trans-
formed equation one cipher is annexed to the second coefficient, two ciphers
are annexed to the third coefficient, and so on. This plan of ignoring the
decimal point in the work is similar to that followed in square and cube root
of arithmetical numbers. These ciphers serve to make the coefficients of the
several transformed equations stand out in the solution.

The figures (1), (2), (3), (4) are also inserted in the solution to indicate
the corresponding coefficients of the several transformed equations.

a. The solution shows how rapidly the decimal figures accumulate. One
form of abridging the solution stops annexing ciphers. But probably the
simplest way is to continue to annex the ciphers, and then decide how many
places shall be discarded, and cut off the same number from each of the
coefficients of the last derived equation. Thus, in the solution just given
four places are cut off by vertical lines from each coefficient. As usual, we
carry from the first right-hand figure cut off.

b. After hundredths are obtained in the root a good approximation can
be found for the next figure of the root by dividing the last term of the last
derived equation by the coefficient of z in the preceding term. After four
or five decimal figures are found, one or two more can be obtained quite
accurately by the same procednre.

Thus, .98647562 11287399 = .87. ,This gives 1.3300687 as the value of the
required negative root correct to seven decimal places.

2. Locate and find to five decimal places two negative roots of
B +328—2z—5=0.

230. Rule for and General Exercise in the Use of Horner's Method.

Rule. (1) Apply Descartes’s rule to find character of roots.

(2) Plot y = f (%) to find approximate values of .

(8) Select a positive root and decrease roots by its integral part;
then decrease roots of resulting equation by tenths, first estimating from
graph, and then locating accurately by synthetic divisions, See § 228,
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(1) Put 22 o, - terms equal to O in last transformed equation,
and solve for «, getting approwimate number of hundredths in the
root. Check by synthetic divisions and decrease roots of last equa-
tion by lesser number of hundredths; and so continue. See § 229, b.

(5) Solve for the other positive roots in the same way.
(6) Solve for the negative roots, after putting — x for .

1. Find to four decimal places the three roots of «* 4+ a2 — 2«
—1=0, checking the answer by § 211, 3, (1).

2. Find to four decimal places the one real root of
- P+5243=0. .
3. Find to 5 places of decimals the root of #* — 3z — 4;0,
which lies betweert 2 and 3.
4. Find to four decimal places the root lying between 0 and 1 of
?+6x2+10c—1=0,
6. Find to four decimal places the three roots of
o —3x—1=0.
6. Find to six decimal places the root lying between 3 and 4 of
20 +a*—152—59=0.
7. Two roots of a®+2* —10 2 49 =0, lie between 1 and 2.
Find them both to four decimal places.
8. Find to four decimal pla.ces.two. roots of o —122 4+ 7=0.
9. Find to four decimal places the four roots of
#—190*-232—T=0.
10. By Horner’s method find to three decimal places the real

cube root of —3, that is, solve #* +3=0. Check by ordinary
solution and by logarithms.

11. Solve to four decimal places ! —a*+ 2 —2=0.
12. Find to 5 decimal places the positive root of
H—3r—204+2+15=0,

after first removing the rat‘;ional root.
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13. On the equation #* — «* + 122 —11 = 0, depends the inscrip-
tion in a circle of a regulal polygon of 37 sides. Find « to two
decimal places. '

14. A piece of swamp land 100 ft. square is to be raised 1 ft.
by ground taken from a ditch surrounding it. If the ditch is to
be as wide as it is deep, what is the width to two decimal places ?

16. The diameter of a water pipe 200 ft. long, which is to
discharge 100 cu. ft. per second under a head of 10 ft., is given
by the real root of the equation #*— 382 —101 =0. Find the
diameter correct to 2 decimal places.

16. A sphere of ice 1 ft. in diameter floating in water sinks to
a depth of « ft. given by the equation 22® — 34>+ 0.93=0. Find
the depth correct to three decimal places.

17. Find the rational roots and compute to three decxmal places
the other real roots of (1) #*+y=2and (2) x+y*=6.

231. Historical Notes. Horner’s method was published first in
the Transactions of the Philosophical Society of London in 1819.
Professor Chrystal says ¢ its spirit is purely arithmetical; and
its beauty, which can only be appreciated when one has used it
in particular cases, is of that indescribably simple kind that
distinguishes the use of position in the decimal notation and the
arrangement of the simple rules of arithinetic.”

Karl Friedrich Gauss (1777-1855) was born in humble circum-
stances in Brunswick, Germany. Owing to the talent he showed,
he received the aid of the Duke of Brunswick in getting a liberal
education. In 1807 he was appointed Director of the Gottingen

" University Observatory, which position he held till his death.

Gauss stands in the front rank of eminent mathematicians, both
because of the number and importance of his writings, and because
of his influence on the development of mathematics through his’
contemporaries and in after times. He took a very active interest
in-the study of magnetism and showed the possibility of mag-
netic communication before Morse invented the telegraph.

A number of references are made to Gauss in other places.
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CHAPTER XV

PERMUTATIONS AND COMBINATIONS
I. PERMUTATIONS

232. Permutations and Combinations, or the Theory of Choice, may
be considered as a separate department of mathematics, which
deals with units, but distinguishes between them, and may regard
the order in which they appear.

In arithmetic, and heretofore in algebra, no distinction has
been made between units. Thus, the apples in a basket dealt
with in a problem might include all sizes and kinds, but each
apple was counted as one, whatever its character. In choicesuch
problems as the following appear: In how many ways can the '
three letters a, b, ¢ be arranged ? Ans. Six ways; viz., abc, acb,
bac, bea, cab, cka. In how many ways can 4 boys be seated on a
bench holding four persons? Ans. 24. (The method of finding
the answers to this and the following questions will be explained
later.) How many different baseball nines can be formed in a
school of 50 boys ? In how many ways can 12 guests be seated
at a table by means of cards for them at each seat? How many
signals can be given by a vessel having 5 differently colored elec-
tric lights with three different positions for each light ?

233. Fundamental Principle used in Solving Problems in Choice.
Before stating the principle, we shall give three examples to which
it applies. - (1) How many different couples of a boy and a girl
can be formed with four boys and four girls? .Ans. 16; because
the first boy can go with each of the four girls to make four
different couples, and so can each of the other three boys.
(2) How many different badges of red and blue can be made out
of seven shades of red and four shades of blue? Ans. 28; for,
each shade of red will go with each shade of blue to make a

267 :
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badge. (3) How many different neckwear effects can be had
with 4 different styles of collar, 6 different ties, and 3 different
scarfpins. Ans. 4 x 6 x 3(=72).

The nearly self-evident principle used in deriving these results
may be stated as follows:

Fundamental Principle. If one thing can be done in a ways, and
after it is done in one of these ways, a second thing can be done in b

" ways, and then a third in ¢ ways, and so on, all can be done in abe
... Ways. ’ :

Exampre. In a school of 24 girls and 18 boys, in how many
ways may a girl and a boy be chosen to take the two principal
characters in a play ?

234. Permutations. Each different arrangement of some or all
of a number of things is called a permutation.

ExamprLE. Nine boys appear on the playground to play base-
ball. How many different ¢ batteries” (of a pitcher and catcher)
can be formed out of them? . How many different teams can be
formed ?

Sorurion. How many different choices are there for pitcher ? After the
pitcher is chosen, how many choices are there for catcher ? Then, by the
principle in § 233, how many batteries can be formed ? Ans. 72. Again,
after the pitcher and catcher are selected, how many choices are there for
first baseman ; then for second baseman, and so on. Then, by the principle
-in § 283, in how many ways can all the nine boys arrange themselves tc
play? Ans. 9 x 8 xTx6x65x4x8x2x1=2362880=91!

This result, 9!, is read ‘ factorial nine,”” or ‘‘nine admiration.’” The
notation n ! is defined to mean the product of all the numbers from 1 to n.
It is thought that the exclamation point was used to express astonishment
at the size of the result. n!is also often written |n. .

235. Formulas for Permutations.

In a literary society of 25 persons, how many different sets of
4 officers, viz. president, vice president, secretary, and treasurer,
can be elected ?

SorurioN. How many choices are there for president ? After the pres-
ident ig elected, how many choices are there for vice president; then, for
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secretary ; and then for treasurer ? Now according to the fundamental prin-
ciple, how many different sets of officers can there be ?
Ans. 25 x 24 x 23 x 22 = 303,600.

Generalizing, let n = the number of different things considered
(as the 25 persons), r=the number taken together at one time
(as the 4 officers), and let P, be a symbol to denote the number
of permutations of n things r together.

In making an arrangement of two things out of n, how ma,ny
choices have we for first place? Ans. n. For second place ?
Ans. n — 1, because one has now been taken out for first place.
Then, how many arrangements are there in all, by the funda-
mental principle (§ 233) ? Hence, '

Pa=n(n—-1).

Thus, with 12 men in a team playing baseball, 12 x 11, or 132
different batteries could be formed. With a company of 15
musicians all able to play the piano, 15 x 14, or 210 different
piano duet combinations could be formed. Notice that order or
arrangement counts here, since if A plays the upper part and B
the lower, the result is different from the reverse arrangement.

If there are n» things taken three together (as the giving of
three prizes to a class of » persons), we have, by the fundamental
principle, since after two things are chosen there are then n — 2
choices for the third,

LPs=n(n—1)(n—-2).

Similarly, Li=nn—1)(n—2)(n—3),

and so on. The student should write values of ,P;, Py, +--

Notice now that the number subtracted from n in the last
factor in each of the formulas just given is one less than the
number of things taken together. Hence, we have generally,

@) P.=n(n—1)(n—2)(n—38) --- (n —'[r-— 1]).

Observe that n, the number of things, is always the first factor,
and that there are just » factors multiplied together on the right
side; that is, if the things are taken “two together” there are
two factors, if ¢ three together ” there are three factors, and so on.
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If r=mn, that is, if the n things are taken all together, Eq. (1)
becomes

@) Po=n(n—1)(n—2)-»1=nl

ExamprLe. To find the number of ways a band of 12 musicians
using 12 different instruments could play if each person could
play any instrument and all always played.

Sometimes repetitions of elements occur, as in the following
problem: How many different arrangements of 4 trees can there
be in front of a house if a choice is allowed between elms, maples,
lindens, chestnuts, and cherry trees? Observe that we suppose
one can get at the nursery any number of trees of any of the
kinds named. If we start to plant them how many choices are
there for the first hole ? for the second, if the same kind of tree
can be planted as before ? for the third? and so on? Ans. 5%

If ,P'=the number of permutations of n things r together
when repetitions are allowed,

B) LP'=nxnxnX - torfactors=mn"

236. Exercise in Permutations.

1. With 12 cups "and 12 saucers all different, how many
different combinations of a cup and a saucer can be made? See
§ 233.

2. If a cent and a dime are thrown, each falling heads or
tails, in how many ways can they fall ? (§ 233).

8. A boy has a choice of 5 routes by which to go to school
and a choice of 3 routes by which to return. In how many ways
may he go and return ?

4. There are 6 vowels and 20 consonants in the alphabet.
How many words consisting of a vowel and a consonant can be
made, if the vowel always comes first ? if the consonant always
comes first? in all ?

5. Calculate with Eq. (1), § 235, (Py; s Py; 6P +Ps; 5P P
sPs; 0FPs; 1Pyj 6 Po; o Ps.




PERMUTATIONS 261

6. In how many ways can a class of 10 pupils be arranged at
the blackboard ?

7. How many signals can be made with 7 different flags placed
one above the other ?

8. There are 7 messages, and four boys offer their services. If
the person giving them out gives any number he likes to each
boy, how many choices has he ?

Suveeestion. How many choices has he with the first message ? with the
second ? and so on. ’

9. Eleven different statues are to fill 11 niches. In how
many different ways can they be set up?

10. How many different tickets are needed on a railroad having
75 stations?

11. How many changes can be rung on a peal of 8 bells if all
are rung each time ?

12. How many different permutations are there of the 26
letters, four together ?

138. If the number of permutations of » things 5 together is
equal to twice the number of permutations of n things 3 together,
what number is » ?

SueeEestiOoN. Solve as a problem in equations, n being the unknown.
Divide by n(n — 1)(n — 2).

14. Twelve persons who dine together agree to change seats so
that they shall not sit exactly the same at any two meals. Allow-
ing 3 meals a day, how many years will elapse before they have
to repeat the original seating?

15. How many numbers are there consisting of 10 different
figures ? _

16. How many different strains of music, consisting of two
measures of 4 quarter notes each, can be written on the natural
scale if any note may occupy any position from C on the
added line below to E on the topmost space, or 10 different
positions ?
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17. How many different rigs can be sent out by a livery stable
keeper who has 20 horses and 12 buggies which can be used either
single or double? It is assumed that the two different ways of
hitching two horses make two different teams.

18. In the Morse signaling system, using dots and dashes, how
many signals can be made with 2 or less than 2 dots and dashes ?
with 3 or less than 3? with exactly 3 dots and 2 dashes ?

19. How many basket-ball fives can be selected in a school of
50 if different positions for any set of players are regarded as
making different teams ?

20. How many baseball nines can be formed out of 16 men of
whom 3 are pitchers, 2 are catchers, and the others can play in
any of the remaining positions ?

Suecestion, Use § 283 after getting 1, Pr.

21. Out of 6 consonants and 3 vowels, how many words can be
formed consisting of 3 consonants and 2 vowels provided the
vowels always come in the second and fourth places?

22. Ten eastern gentlemen met at a party and each saluted all
the rest. If 5 minutes were consumed in each greetmg, how
many hours were required ?

23. How many signals can be made with a semaphore having
3 arms on each side, if each arm can stand in 4 different posi-
tions ? :
24. How many kinds of hexameter verse can there be ?

SvceesTioN. Hexameter in theory consists of 6 dactyls (— v V), but .
the last is always replaced by a spondee (— —), or a trochee (— V). The
first four measures permit freely of spondees instead of dactyls. The fifth
place is only occasionally spondee. How many choices are there for first
measure ? for second ; and so on ? how many in all ?

II. COMBINATIONS

237. Combinations. Each different group out of a number of
things is called a combination. Changing the order of arrangement
in each group does not change the combination. Thus, a group
of five persons in an automobile belonging to a touring party of
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twenty can seat themselvesin 5 x4 x 3 x 2 x 1, or 120 different
ways, but they form only one combination, or group, out of the
20 persons.

" The distinction between permutations and combinations is well
shown by the difference between a set of 4 officers and a committee
of 4. In the case of the officers the order counts, since it will
make a difference whether A is president and B vice president,
or vice versa; while in a committee, all will stand on the same
footing, having the same duty to perform. As another illustra-
tion, consider the number of football elevens that can be sent out .
from a school. From the standpoint of the captain, the number
is one of permutationhs, since to him the order or positions in
which the men play counts; while from the standpoint of the
faculty, as absentees from classes, the number is only one of com-
‘binations of men out of the school. :

It is convenient to calculate  combinations from permutations.
Thus, if the number of sets of 4 officers in a society of 30 mem-
bers is 30 X 29 x 28 x 27, the number of committees of 4 persons
jg 30X 29 x 28 x 27

1x2x3x4
or 24, different sets of officers but only one committee. In a city
8x%T7x6
1x2x3
since there would be 8 x 7 x 6 arrangements of 3 men each, and
each committee of 3 men could be arranged in 1 X 2 x 3 ways.

In general, r things taken r together can be arranged in r! ways
(§ 235, Eq. (2)). These r! permutations reduce to one combina-
tion. Thus, the number of permutations of n things r together
is r! times the number of combinations of n things r together.
Consequently if the total number of permutations of n things r to-
gether is divided by !, the quotient is the number of combinations
of n things r together. Hence, if ,C, denotes the number of com-
binations of n things r together, we have, by § 235, Eq. (1),

, because every group of 4 persons makes 4!,

council of 8 persons, there could be committees of 3,

(CY) 0=n(n—1)(n—2)(n-3) e (n=[r—1])
T . rl ]
COLLINS'S ADV. ALG. — 18
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This value of ,C, can be changed in form by multiplying both
terms by (n —7)!. In this way, we get

c=rr=1)(n-2) - (n—[r—1])xX(n—7) -]

r!(n—r)!
or,
(5) - n! (Since the preceding numerator includes
"7 rt(m—r)!  every factor from « to 1.)
! !
Now, ,C,_, = 2 =—""__. (By substitut-

(=) (n—=[n—r])! @—2)!!

ing n — r for r in (5).)

a. This last formula compared with (56) shows that the number of combi-
nations of n things r together is equal to the number of combinations of n,
things (n — r) together. Hence, if we have to calculate the number of com-
binations of, say, 80 things 78 together, we shall get the same result if we cal-
culate the number of combinations of 80 things 7 together, and the latter
calculation is easier to perform.

b. Formula (5) gives the number of ways in which n things can be divided
into two classes of n and n — r things respectively.

¢. Formulas (4) and (6) both give ,C,, but (4) as a rule will give the
simpler solution.

d. Binomial Coefficients as Combinations. By reference to § 193 we see
that the third binomial coefficient is the number of combinations of » things
2 together ; the fourth coefficient gives the number of combinations of n
things 3 together: and the general, rth term, coefficient gives the number of
combinations of n things r — 1 together. Why this relation exists can be
seen by examining § 211, 1, 2, supposingae =b =c¢, ---.

238. Exercise in Combinations.

1. Caleulate 4Cp; (Ci; 5Ch; 5Cs; 5Ci; ¢Ca; 4Ci; 15Cn  (see
§ 237, a); 2C,; Cis %Ci; 100C0m; 16055 1P 1Cn

2. How many different committees of 3 each can be selected
out of a club of 756 members ?

8. In how many ways can two men divide 16 horses so that
one will get 12 and the other 4? (See § 237, b.)
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4. In an examination 12 questions were given, of which only
8 were required. How many choices were given ?

5. How many different sets of 20 councilmen can be elected
out of 30 candidates ?

6. How many different connections will a telephone girl have
to make on a line having 95 subscribers ?

7. There are 6 coins of different denominations. How many
different sums can be made up with them ?

8. In how many ways can a committee of 7 with a chazrman
be selected out of a council of 15 members ?

SvceesTioN. How many different committees can be selected without
reference to chairman ? If each man in turn of any committee becomes
chairman, how many different committees are there ?

9. How many distinct sounds can be made on the 60 keys
of a piano by striking 6 at a time, assuming that any 6 can be
struck, as by a mechanical player ?

10. How many basket-ball teams can be selected in a school
of 300 if no attention is paid to the way the team plays when
selected ?

11. How many quadrilaterals can be formed out of 24 dif-
ferent points, no three of which lie in the same straight line?
how many triangles ? how many hexagons ?

12. How many tetrahedrons can be formed out of 24 different
points, no four of which lie in the same plane ? :

13. If we allow 80 as the number of well-characterized chemi-
cal elements, and assume that one atom each of any two or more
can unite, how many substances can be made out of two different
elements? out of 3? out of 4?

239. Permutations of n things all together where some are alike.
If all the things were unlike, there would be »! permutations in
all (§ 235, Eq. (2)). If, now, p things are alike, one arrangement
of them will not be changed by rearrangements of the p like
letters. Hence, there will be p! times as many arrangements
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originally as when p are alike. Thus, if p things of one kind are
alike, ¢ of another kind are alike, r of a third kind are alike, the
number of permutations of the n things reduces to
n!
1. How many signals can be made by hanging 14 flags each

time on a staff if 2 flags are white, 3 are black, 5 are blue, and
4 are red ?

2. Galileo, in a letter dated Dec. 11, 1610, conveyed to the
astronomer Kepler the nature of the light of Venus seen by him
first in his telescope in the following eryptogram: ¢ Haec imma-
tura a me iam frustra leguntur o. y.” which, by changing the
order of the letters, becomes “ Cynthiae figuras aemulatur mater
amorum,” that is, ¢ the mother of loves has the phases of Cynthia”
(the moon). In how many other ways can these 35 letters be
arranged besides the form Galileo used ?

III. SELECTIONS
240. Selections. Selections are made by taking or leaving.

1. The number of different selections that can be made from
n articles is 2* —1. For, there are two choices for each article,
either to take it or leave it; the one case must be subtracted from
the total in which nothing is taken at any time.

Thus, if a stall in a bazaar contains 5 articles, the purchaser
may secure 1, 2, 3, 4, or 5 articles. In the case of one article, it
may be any one, or 5 choices; in the case of 2, they may be any
combination of 2 out of the 5; in the case of 3, they may be any
combination of 3 out of 5; and so on. Now we get the same re-
sult by using the formula, 2° — 1, as by the reasoning just given,

or 31.
x4 5x4x3 , 5x4x3x2 _
Thus, 64—+ oxs T ixzxgxa T =5

But reasoning that you have the two choices of taking or leaving
for each article gives the result much more quickly than by the
other process.
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ExamprLe. How many choices has a lady at a bargain counter
where there are 10 articles ? Ans. 1023.

2. The number of different selections that can be made from
p~+q+7+ .- articles of which p are alike of one sort, ¢ alike of
another sort, r alike of a third sort, and so on, is

@+D@+DE+1 -1,

For, the person selecting can take of the first sort either none, or
one, or two, and so on up to p; that is, he has p 41 choices; and
so for the other things. As before, the one case in which noth-
ing is taken at any time is excluded.

ExamprLe. How many selections can be made from 3 pairs of
shoes all alike, 5 suits all alike, and 4 bats all alike ?

IV. GENERAL EXERCISE

241. General Exercise in Permutations and Combinations.

1. With 5 suits, 6 hats, and 4 pairs of shoes in her wardrobe,
in how many costumes can a lady appear?

2. From 20 Republicans and 15 Democrats how many com-
mittees can be chosen, each consisting of 3 Republicans and 2
Democrats ?

3. In how many ways could 56 men be located in a sleeping
car, having 14 upper and 14 lower berths, each holding 2 persons ?

4. If 7 contestants enter a mile race, in how many ways can
first, second, and third places be won?

5. In how many ways can an 8-oared crew be selected- from
20 aspirants for a place, and in how many ways could any crew
be seated ?

6. Six basket-ball teams wish to arrange a series such that
each team will meet every other team twice. How many games
will have to be scheduled ?

7. In how many ways can a baseball nine be selected from 20
players of whom 6 are outfield players (three positions), 8 are in-
field players, 4 are pitchers, and 2 are catchers?
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8. In how many ways can a person invite one or more of six
friends to dinner?

9. How many parallelograms are formed if a set of 16 parallel
lines meets another set of 12 parallel lines ?

10. Three positions are -vacant and there are 16 applicants. In
how many ways can the positions be filled ?

11. In how many ways can six ladies and three gentlemen
arrange a game of lawn tennis, each side to consist of one lady and
one gentleman ?

12. How many different objects can be measured on a metric
balance with which go 12 different weights ?

13. If there are 5 different letter boxes, in how many ways can
a person deposit two letters in them ?

14. In how many ways can six different beads be arranged on
a string ? (Notice that for each arrangement the beads can be slid
along one place six times without changing the bracelet, and that
any order and this order reversed also give the same bracelet,
since turning it over does not make a new bracelet.)

16. Find the number of bracelets that can be formed by string-
ing together four pearls, five rubies, and six diamonds.

16. In a telephone exchange with 500 subscribers how many
connections can be made? How many different calls can there
be ?

17. In a certain telephone exchange 213531 different connec-
tious can be made. How many subscribers are there ?

18. How many distinct sounds can be produced on 13 keys of
an octave on a piano by striking 4 at a time?

19. How many different pickets of 5 men and an officer can be
made out of 100 men and 8 corporals ?

20. There are q candidates for r seats. Find in how many dif-
ferent ways the voting may result; that is, find the number of
different sets of candidates that may be elected.



CHAPTER XVI
PROBABILITY

242. Probability or Chance Defined. If all the causes that go
to the producing of an effect are known, then the effect can be
predicted. Very frequently, however, the causes of events are
not completely known, and we are then led to talk of the chance
or probability that any event will happen.

The chance or probability that an event will happen has been
defined by La Place as follows: If an event can happen in a ways
and fail in b ways, all equally likely to happen, the probability or

a

Thus, if 20 slips of paper containing the names of 7 Americans,
3 Englishmen, 6 Germans, and 4 Norwegians, members of a lodge,
are put in a box and one is drawn at random to choose a delegate,
the chance that an American is chosen is 45, and the chance that
an American is not chosen is 13 ; the chance that an Englishman
is chosen is 4%, and the chance that an Englishman is not chosen
is 3f; and so on. Or, again, if it rains 73 days in a year at a
certain place and does not rain 292 days, we may say the chance
that it will rain on any given day in the future is 543, or }, and
the chance that it will not rain is $§3, or $. '

If an event can happen in a ways and fail in b ways all equally
likely to happen, then we say the odds in favor of its happening
are as a to b, and the odds against its happening are as b to a;
but the word odds implies an improper fraction ratio. Thus, the
odds against rain in the illustration just given are 292 to 73, or
4to 1.

a. Particular attention is called to the phrase ‘¢ all equally likely to hap-

pen’’ in the definition of chance given above. In the case of the drawing of
269

chance that it will happen is i ¥ and that it will fail is a i b
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a slip, since all the slips may be supposed to be practically alike, any one slip
would be as likely to be taken out as any other; but in the case of the
weather, this would not be true, since certain months are likely to have more
rainy days than others. For the definition to hold, then, all the events must
be equally likely to happen. In this weather problem it would have been
more satisfactory to take a period of a certain month rather than of a year.

D’Alembert said : ¢‘ There are two possible cases with respect to each fu-
ture event, one that it will occur, the other that it will not occur. Hence the
chance of every event is 3, and the definition of probability is meaningless.”
Evidently D’Alembert is wrong about this, since, as we have just seen in the
examples given, chances are not, as a rule, the same.

ExamprLe. If two coins are tossed simultaneously, what is the
chance that they will fall both heads ?

SoruTtion. It would be false reasoning to say that since they can fall both
heads or both tails, or one head and one tail, that the chance that one can
happen is §. For these three things are not all equally likely to happen, the
case of head and tail being twice as likely to happen as either both heads or
both tails.. Four events here are equally likely to happen, viz., head-head,
head-tail, tail-head, and tail-tail. Hence the chance that the coins will fall
both heads is }. The chance that either one will be head and the other
tail is §. The problem implies also that each coin is perfectly formed and
exactly as likely to fall one way as the other.

a b
d
at+d " a¥o

Hence, if we know the chance that an event will happen, the
chance that it will fail is found by subtracting the former from
unity. Either event is called the complementary event to the other.
The probability 1 denotes certainty of happening; the probability
0 denotes certainty of failing.

243. Complementary Event. The sum of is 1.

244. The Law of Averages, that the average of a cer vin number
of data approximately equals the average of a like number of corre-
sponding data, is a law of nature that deserves to rank very high
in importance. If it were not for the law of averages, wo might
seem to be living in a world of chance instead of one of law.

It is highly desirable that every one should have a good under-
standing of the law of averages, of its application, and of its
limitations. Perhaps the best example of the working of the
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law may be seen in election returns. Every one knows that as
soon as an election is over, precinct returns are published to the
world. Even in a national election, after only a fraction of the
returns are in, people begin forecasting the result, forming their
judgments from the law of averages. Itisvery unsafe, however,

to predict results, basing the prediction on a few precincts, es-
" pecially if these lie in one district, since local conditions may
materially affect results there. It is only averages, the larger
the scale the better, that seem to hold good. This applies to
statistics of all kinds, such as the growth in population, the
government’s revenue, the death rate, etc.

245. Probability and the Law of Averages. The definition of
probability or chance found in § 242 cannot be applied to important
classes of events, such as are enumerated in statistics, since it is
impossible to enumerate the different ways in which events can
happen, and impossible also to have them equally likely to occur.
But it is easy to know from statistics what has happened under
very similar conditions in the past, and from such results what
will happen in the future can be pretty safely inferred. In this
way, formulas and rules obtained from a study of problems to
which the definition does apply, can be carried over to problems
that involve statistics. With the preceding in mind, the follow-
" ing definition of probability can be used :

Number of ways a similar event actually occurred
Number of ways the event might have happened

Probability =

246. Examples of Probability.

1. In round numbers, the population of Continental United
States in 1880 was 50,000,000; in 1890 it was 62,500,000; in
1900 it was 76,000,000; in 1910 it was 92,000,000. About what
will it probably be in 1920? in 1930 ? Calculate what it ought
to have been in 1900, and compare the result with the actual fig-
ures. Do the same for 1910.

Suacesrion. To calculate the population in 1920, multiply the population
in 1910 by the ratio of the population in 1910 to that of 1900 ; to calculate
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the population in 1930 multiply the population in 1920 by the ratio used be-
fore, since that is the best available.

2. The total revenue of the general government in round num-
bers for a certain year was $ 516,000,000, of which the internal
revenue was $ 272,000,000. The total revenue the next year with
the same laws in force was $ 567,000,000. Find an approximate
value for the internal revenue the latter year.

(Actually it was $ 295,000,000.)

8. The area of Lake Superior is 31,000 sq. mi., and it drains an
area of 85,000 sq. mi. The area of Lake Erie is 10,000 sq. mi.,
and it draius an area of 40,000 sq. mi. Are the areas of these
lakes approximately proportional to the areas they drain ? (Here
we find a wide variation; but still a rough proportion exists.)

4. The mean temperature of Chicago for the month of January
for a period of 31 yr. was 23.8°. If the mean temperature for the
month of January, 1902, was 25.2°, what was the variation from
the normal ? Is this a close approximation ?

5. If a penny is thrown 6 times, according to the law of prob-
ability, it ought to fall heads 3 times and tails 3 times. As
a matter of fact, the actual happening is likely to vary greatly
from this for so small anumber of times. - If, however, the penny
is symmetrically constructed, and is thrown 500 times, something
like what number of the throws should fall heads, and what num-
ber tails ?

a. The preceding problem suggests the statement that in nearly all the
mathematical works that treat of this subject, the problems given deal largely
with cards and dice, or with balls in an urn, or the like. Now, there is a
double reason why such problems are objectionable : first, because they are not
very practical; and second, because the laws of probability do not hold well
for a small number of events. Even with a nearly. perfect die the rules
would not hold well for a small number of throws.

6. The theory of probability is applied to mortality tables.
The table on next page gives the number of survivors at different
ages out of 100,000 particular persons alive at the age of 10.
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.

Acr SURVIVORS AGE SouRrvVIVORS || AGe SURVIVORS

10 100,000 40 78,106 70 38,569

16 96,286 45 4173 | . 5 26,287

20 92,637 50 69,804 80 14,474

26 89,082 56 - 64,663 85 5,485

30 85,441 60 57,917 90 847

35 81,822 85 49,341 95 3
7. Taking figures from this table, calculate what is the chance
R 81822
that a person 15 years of age will live to the age of 35. Ans. 96285

8. What is the chance that a person 40 years old will live to
" be 80 years old ? What is the chance that a person 70 years old
will live to be 90 years old ?

247. Probability and the Theory of Combinations. Many solu-
tions in probability depend on the theory of combinations.

1. In a receptacle were placed 30 names of persons to be drawn
for jury service, of which 12 were to be drawn. Sixteen of the 30
belonged to men ‘who lived in the county seat. What is the
chance that all the mnen selected will be from the county seat ?

SoLutiox. The number of combinations of 30 things, 12 together, or

the total number of different juries is 1_23!11‘_8—1 (§ 287, eq. (5)). The total num-
ber of juries that could be formed out of the 16 men, or the number favorable

161 Hence, the chance that all will
121 41
4

which equals
190,096

to all being from the county seat is

16! 18!

or one chance in
30141’ ’

be from the county seat is
about 50,000.
" 2. In arailroad wreck it was reported that out of 20 persons on
the train 5 were injured. If one family consisted of 7 persons,
what was the chance that all the injured belonged to this family ?
3. From a committee of 4 Juniors and 6 Seniors, a subcom-
mittee of 3 was chosen. Find the probability that it will consist
of 2 Seniors, and 1 Junior.

SuaaestioN. Find the number of combinations of 10 persons, 3 together ;
then of 6 persons, 2 together, and 4 persons, 1 together, using § 233.

\
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248. The Addition Rule. The chance that one or other of several
related events will happen is the sum of the chances that each will

happen.

1. Out of a gang of workmen consisting of 6 Americans, 5§
Italians, and 4 Englishmen, 3-were drawn at random for a particu-
lar job. Find the chance that all will be of the same nationality.

SoLuTION :

The chance that they will all be Americans is 273, or4 (5 237, (4)).

1503 91
The qhanée that they will all be Italians is 52f (§ 287, (4)).
The chance that they will all be Englishmen is . ‘% (§ 237, (4)).

The chance that they all are of the same nationality is 4%% .

2. In a society consisting of 25 members of whom 15 are
Protestants and 10 Catholics, 5 officers are chosen at random.
What is the chance that they will be either all Protestant or all
Catholie ?

3. What is the chance in Ex. 2 that Protestants and Catholics
will both be represented ?

SuccesTiON. Get the complementary event to that of Ex. 2.

249. The Muitiplication Rule. Compound Events. The chance
that two distinct events will occur szmultaneously 18 the product of the
chances that each will occur.

1. What is the chance if two dice are thrown that both will
turn up 3? Ans. } X 3, or .

2. The chance that it rains in Mr. A’s town on any given day
is 3. Now Mr. A, on the average, carries-an umbrella one day in
seven. What is the chance that Mr. A will be caught in the rain
without an umbrella ? .

3. A regiment of soldiers enlisting is to have 1000 privates
and 25 officers. What is the chance that two brothers enlisting
will both become officers ?
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EXPECTATION

250. Expectation is a term used to describe -the sum one may
expect back from money put in hazard. » The mathematical expecta-
tion i3 always the product of the sum to be realized and the chance
of getting it. '

1. In a lottery ten tickets were sold-at $1.25 apiece, and 2
_prizes were to be given for the two lucky tickets, one for $ 8 and
the other for $2. What is the “expectation ” of a man who pur-
chases a ticket ?

SorurioN. His expectation on the $8 prize is gy x $8, or $0.80.

His expectation on the 82 prize is 4; x $2, or .20.
His expectation on both prizes is $0.80 + $0.20 = $1.00.

2. In a pool at a horse race, one man bid $ 15 for first choice of
the winner, another $10 for second choice, still another $5 for
third choice, and a fourth bid $6 for the “field,” that is, all the
other horses that ran. The manager takes out 10 9, for expenses.
What should be the ‘“expectation ” of the several bidders, if the
actual chances of winning of the several horses are 4, }, 4, 7% ?
Ans. $16.20, $8.10, $5.40, $2.70..

The first and third men had a little the best of the bargain, but taken as
a whole they lost the manager’s 109,

251. Exercise in Probability.

1. Two numbers are chosen at random. Find the chance that
their sum is even.

- 2. A man pays $5 for one ticket in a lottery in which there are
1000 tickets. The prizes are: one of $1000, two of $500 each,
12 of $100 each, and 40 of $10 each. What is his expectation ?

3.. A letter is drawn at random out of each of the words
choice and chance. Show that the probability that they are the
same letter is }.

4. A, B, and C have equal claims for a prize. C says to A and
B, you two draw lots first; then let the loser withdraw, and the
winner draw lots with me for the prize. Is this fair? Show
that the chances are }, }, § respectively.
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5. The common number lottery contains 90 numbers, of which
5 are drawn out. Show that the chance that all a man’s numbers
. . . 1
who possesses three ticketg will be drawn is i—17—’4—8-(—)
8. If three dolls whose first cost are respectively $1, $2, and
$ 3 are raffled off with 100 tickets at 10# each, what should be the
expectation of a person who has bought $2 worth of tickets ?

7. The probability that A can solve a problem is §, and that
B can solve it is §. What is the probability that both will solve
it? The probability that either one or the other will solve it ?

8. The English House of Commons, consisting of 670 members,
has (1913), 84 Irish Nationalists and 41 Independent Labor mem-
bers. If a committee of five is chosen at random, what is the
chance that it will contain 2 Nationalists and one Labor member ?

9. If 3 points are taken at random on a circle, what is the
. chance that they will not lie on the same semicircle. Ans. §.

SuceEsTiON. Draw any diameter and calculate the chance that all the
points will lie on the same semicircle.

10. If at a live stock show four animals of equal merit are
judged, first by an agricultural student and then by the regular
judges, what is the chance that the student will rank the animals
in the same order as the judges ?

11. A man has left his umbrella in one or other of three stores
which he visited. He is in the habit of leaving it once every
4 times on the average that he goes into a store. Find the chance
that he left it in the first, second, and third stores respectively.

12. What is the chance that A and B, each aged 20, will both be
alive at the age of 60? (See § 246, 6.) What is the chance that -
of A, B, and C alive at the age of 30, only one will be alive at.70 ?
Use logarithms.

SuceesTiON. These are compound events, § 249. In the second problem
find the chance that A and B are dead and C is alive, and multiply the result
by 8, since either of the three alive would satisfy the conditions.

13. What is the chance that out of eight particular persons
alive at the age of 10, only six shall be alive at the age of 50 ?
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SuaecestioN. What is the chance that A will die? B? What is the
chance C is alive? D? etc. What is the chance that A and B die and the
rest survive ? (§ 249.) How many different sets of two can be formed out of
eight persons? What, then, is the chance that just two will have died ? Use
logarithms in making the calculation.

14. If on the average one vessel in 100 is wrecked, find the
chance  that of 10 vessels expected only 8 will arrive safely.
Find the chance that at least 8 will arrive safely.

15. A’s skill at a game is % of B’s. What is the chance if they
play that A will win at least 2 games out of 5?

SuceestioNn. Find A’s chance of winming all five games ; then his chance
of winning 4 and losing one ; and so on.

16. A set of dominoes is numbered from double blank to
double 6. If one is drawn at random, what is the probability
that it contains a total of 6 ?

17. The English physicist, Hooke, published the discovery
contained in the Latin sentence ¢ Ut tensio, sic vis” (as the
resistance, so is the power), by .the cipher ceiiinosssttuw.
If one arrangement of these letters is as likely as another, find
the chance of getting the right one in 500 trials.

18. A person writes n letters and addresses n envelopes. If
the letters are put into the envelopes at random, what is the
chance that all go wrong ? .

SvcersTioN. What is the chance of missing on the first letter ? After it
is placed, what is the chance of missing on the second ? and so on.

19. A rod is broken at random into three pieces. Show that -
the chance that no one of the pieces is greater than the other
two together is 1. '

SucerstioN. Calculate the chance of the complementary event, dividing
the line first into four parts, getting cases that can be settled with this di-
vision ; then into 8 parts, getting cases not before included ; then into 16 parts ;
and 8o on.

Note. A standard work on Permutations, Combinations, and Probability
is Whitworth’s *“ Choice and Chance.’”” Besides a great variety of problems
this book contains a chapter on the wrongfulness and disadvantage of gam-
bling, including a discussion showing that insurance is the reverse of gambling.



CHAPTER XVII
DETERMINANTS

252. A determinant may be described as a homogeneous quan-
tity constructed according to certain rules out of n? quantities or
elements, and commonly written in square array. A determinant
of the second order consists of 2% quantities or elements; one of
the third order of 3? quantities, and so on. Determinants orig-
inated from a study of the solution of simultaneous equations.

1) a2+ by=
523 266 i bj _ Z, we have
2) o+ aby =a,c, (Mult. Ax.)
1) @@z + aby =ae, (Mult. Ax.)
(mby — agh)y = a,c;—axc, (Sub. Ax.)

Solving the’equatic.ms {

UG &G g

) ab, —ash,
Then (§ 42), . =000 g
a,hy— ayb,

The numerators and denominators of the values of x and y are
" determinants. '

253. Determinant Notation. In the determinant notation, the
rule for writing down the values of = and y of the preceding
article is simple. In this notation the quantities or ¢ elements”
involved are written, as already stated, in square array, and
placed between two vertical lines.

Thus, the denominator of the values of « and y in the preced-
& b '
Ay Oy
278

ing article, a,b, — a,b, is written
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, we have two horizontal rows, a,b, and a,b, ;
two vertical columns a,a, and b,b,; and two

n lL}\é
Al
diagonals, the first a,b, called the principal diagonal and the sec-
ond a,b, called the secondary diagonal.
o b
a; 0y
principal diagonal a\b, less the product of the two quantities in the

secondary diagonal ab,, or, a,by — azby.

The notation signifies the product of the two quantities in the

254. Exercise in Evaluation of Determinants of Second Order.
32

2
1. 6 8l SoLuTION : 68!=3x8—2><6=12. Ans.
3 —2 3 -5 =10
—32 —6 —4 -2 4
7. |® 5 a+b c+d 9. ® -
2y 4 c—d,a—0b 4 -7

255. Solution of Simultaneous Equations containing Two Un-
knowns by Determinants.

Using notation § 253 for the values of z and y in § 252, we see

{(1) ax+by=¢q

@) az + by = ¢ have for their values of z and y,

a b 4«». ¢
z= ¢ by —= a3 Cq
a, b’ a, b
ag by ay b,

Comparing these values of z and y with Eq.’s (1) and (2) we
see that for the denominator of each value we merely write the four
coefficients of x and y in (1) and (2) as they stand, in square array
tnclosed by lines; to get the numerator of x we take its denominator

and substitute the column @ (of right members) for “, the coefficients
Ce ' ag

COLLINS’S ADV. ALG, — 19
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of ®; and for the numerator of y, we take its denominator and
substitute cy,c,, respectively, for the coeflicients of y.

Solve, using determinants and verify answers (see §§ 4143):

L 4 —-Ty=-2,
) S5243y=21.
SorLuTiON : :
-2 —-7‘
z = _4—2_6_—147 =m=3. Ans,

‘4 —7| =T12-(-35) 47

42
_ls 21| _st—(—10)_94_,
Y= T () 4 > A

65 3

VERIFICATION (1) 4 X8 —-T7Tx2=-2; (2) 6 x3+3x2=21
{4x+9y=3, 5 {2'a:+7y=‘11,
3z +Ty=2. bx—-9y=1.

. {5w—3y=20, 5. {4w+33j=17,
Sz—4y=1. S5e— y="T.
{69:— y =27, - {5w—8y+46=0,
8y—3z+36=0. 224+ 3y+6=0.

. {ax+by=1, 0. {aw+by=0,
cx +dy =1. mex + ny = 1.

256. Determinants of the Third Order.
Q) oz + by + oz = dy,
If the equations {(2) ag® + by + ¢z = dy,
(3) asx + by + ez =dy
are solved by the regular method of solution for three equations
containing three unknown quantities (§ 46) by eliminating 2z be-
tween (1) and (2), getting (4), and then z between (1) and (3), get-
ting (5), and lastly solving (4) and (5) by eliminating y, there
results the value of x at the top of the next page.
The values of y and z are obtained by substitution in (4) and (1).
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2= dibeCs + dgbgty + dsbyCo — dhbycy — debycy — dsbtcl
Dty + Ashs0; + AghiCy — AbsCs — ashiCs — agbse
= Wdels — sty — aglics + asthcs + Ayt — asls0y
Wbycs + aghyey + aghics — abec; — aghycs — azhyc

== Ubydy — aybydy — aghyds + ashydy + asbed) — asb,d.
MbaCs + Asbgey + AghiCy — Wbty — asbicy — azhyey

The numerators and denominators of these values of , y, and 2,
as in the case of the roots of two equations containing two un-
knowns, are determinants, and can be written in the square nota-
tion as follows:

d, b ¢ a d ¢ a b 4,
dy b, ay d, ¢ a, b, d,
2= d; b ¢ y= a; d; ¢ =aabad:.
a b gl . a, b ¢ @b o
a b, ¢ a; b, ¢ a, b, ¢
@ by ¢ a; b; ¢ as by ¢

Notice, as in the case of determinants of the second order, that
Sor the denominator of each value we write the nine coefficients of x,
9, # in the given equations (1), (2), (3), as they stand, in square ar-
ray,; to get the numerator of x we take its denominator and substi-
tute the column formed from dy, ds, d; (the right members) for the
column of coefficients of x ; and we make similar substitutions for
the values of y and 2.

Comparing the denominators of the two values of = given above,
we have

i by o
a!bg%
a,b.c,

Let us now study by what rules the right side of the last equa-
tion can be derived from the left side. 'We observe that
(1) In each term of the right side only one letter comes from
any one row, and also only one letter from any one column
of the left side.

= aybyes + 43,1;,0, + azb ¢, — aybsc, — aghic; — aabzcn
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(2) The right member includes all possible products (3! of them,
§ 235, (2)) having one letter from each row and each column.
(8) The letters in each term on the right side are put in alpha-

betical order.
(4) The subscripts of the positive terms are in eyclic order and
1 the negative ones are not in cyclic order. By
cyclic order is meant arranged as in the circle in
the margin so that 2 follows 1, 3 follows 2, and
then 1 follows 3. If n numbers are on the circle,

2 1 follows n.

257. General Determinant of n? Elements and n/ terms. The
rules (1)—(3) § 256 apply to determinants of any order.

A general rule for the signs of the terms of a determinant of any
order can be formulated by taking account of what are called
inversions of the subscripts, the letters themselves being in alpha-
betical order. If we take the natural order 1,2, 3,4 -.- as the
standard, then every time any larger subscript number comes
before a smaller, it is counted as an inversion. The rule for the
signs of the terms then is: If there are no inversions or an even
number of inversions of subscripts, the sign of the term is +; if there
s an odd number of inversions, it i3 —.

Thus, in a,b,c,, there are two inversions, 2 before 1, and 3
before 1, and the sign is +; in «,b,, there is one inversion 3
before 2, and the sign is —; in a;b,c, there are three inversions,
3 before 1, 2 before 1, and 3 before 2, and the sign is —. In
ab.cyd, there are 5 inversions and the sign is —.*

Find the signs in the following by counting inversions:
1. @06y aghiCa; aybyCs; byCody; asbiidy; agbacad.
2. aydycydy; pbscgdiess abicste,; abyids; azdyCody

* In higher mathematics the elements of determinants are very often denoted
by a single letter with double subscripts, one giving the row and the other the
column of the element. Thus a;; would denote the element in the first row and
first column, and a,, the element in the pth row and qth column. To get the sign
of any term in the expanded form of such a determinant, the second subscripts
can all be written in natural order, 1, 2, 3 ... and then the inversion of the first
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258. Properties of determinants illustrated in determinants of the
second order. Prove the identities of this article by ¢expand-
ing” each member into the form of an ordinary quantity, and
comparing the results. :

a by|_|a a

1. Prove that a b= b

We learn from this that interchanging rows and columns does
not alter the value of a second order determinant.
a b E—b‘a’ls— azbz_
ay b, b, a, a b

Thus, interchanging the two columns or the two rows of a second
order determinant changes its sign.

mag mby| _ -l bll_ may, by|
ay bz az b, may b,
Thus, multiplying the « elements” of one row or one column of a

second order determinant by a number multiplies it by this number.

2. Prove that

3. Prove that

a l_ a, ma,|
ma, mb, - Ay My

Thus, if the elements of one row of a second order determinant are
respectively equal to the same multiple of the elements of another row,
the determinant equals 0. A similar principle holds for two such
columns.

4. Prove that -

Evidently then also when two rows or two columus are the same
the determinant is 0.
We now consider corresponding properties of any determinant.

" 259. Properties of Determinants.

1. Interchanging any two adjacent rows (or columns) of a deter-
minant changes its sign.

subscripts can be counted as in the rule given for the sign of this term. Evi-
dently one set of subscripts takes the place of the different letters, a, b, c, «--.
Thus,

da;p 13 dig
ag, dgg dgg
Qg g2 Qagg

= 03)00033 + (21032013 + A31 Q19098
— @10gadeg — dg1doe()g — d21a120gs.
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For, this amounts to the inversion of two subscripts, or two
letters and hence two subsoripts, in each term. (See § 257.)

2. Interéhanging any two rows (or columns) of a determinant
changes its sign. -

For, to get one row in another row’s place by successive inter-
changes of adjacent rows requires, let us say, n interchanges:
then to get the second row back to the first one’s place will re-
quire one less, or n — 1 interchanges. Altogether there will be
2n —1 successive interchanges,—an odd number. But an odd
number of changes of sign means that the sign of the original
determinant has been changed.

a. Hereafter, as in the proof just given, we will often use the word row in
proofs to mean either a row or column.

3. Multiplying or dividing the elements of any one row (or column)
of a determinant by the same number multiplies or divides the value
of the determinant by this number.

For, one letter and only one in each term of the “ expanded ”
determinant will be multiplied or divided by the multiplier or
divisor number, which has the effect of multiplying or dividing
the value of the determinant by this number. Thus,

369 123 -“|113] |1118
348 =3348 =6|328|=|3248
225 225 215/ 12130

Here 3 is first taken out of the first row; then 2 is taken out
of the second column; then 6 is put back into the determinant
by multiplying the elements of the third column by it.

4. If two rows or columns of a determinant are identical, or become
tdentical after removing a common factor, its value i3 zero.

For suppose the value of the determinant is D. Then, inter-
changing the two identical rows, by 2 above, changes its sign, giving
— D. But interchanging two identical rows leaves the determi-
nant unchanged. Thus D =— D, whence 2 D=0 or D= 0.
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260. Separation of a Determinant into Two or More. Addition of
Determinants having all but One Row or Column Common.

By expanding both sides it is easy to show that

o' b ¢
a,' by c),
a;' by ¢

a,+a' b ¢ a b 01,
G+ b 6| =|ay b, ¢,/ +
aa+aa_' bs ¢ a3 b ¢

Thus, the sum of two determinants having all but one column
(or row) common is equal to one determinant containing the common
columns, and in its remaining column elements which are the re-
spective sums of the corresponding elements of the two given de-
terminants. Conversely, one determinant can be separated into two
by separating each of the elements of any column (or row) into two
parts and making these parts corresponding elements of partial de-
terminants.

261. Changes in a Determinant which do not Alter its Value.

1. Any even number of interchdnges of rows or columns does not
alter the value of a determinant.

2. Any row, or column, of a determinant can have added to its
respective elements the corresponding elements of any other row, or
column, ' each multiplied by the same number, without altering its

value.

For, upon separating the resulting determinant into its constitu-
ent determinants, as in § 260, one of the resulting determinants is"
the original one, and the other (after taking out the common
factor from the elements of the added column) has two columns
common, and by § 259, 4 vanishes.

Extending this idea, evidently we can add to the respective)
elements of any row (or column) the sumns of the corresponding
elements of two or more rows, each multiplied by any factor with-
out altering its value.

This theorem can very often be used to shorten the labor of
evaluating a determinant,

v
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262. Minors in Determinants. The determinant (§ 256)
W,0yC; + Aobscy + azbic, — abye, — aszca azhyc, =

0, (DyCs,— b3Cy) — by(@g€; — a5c,) + cx(azb. — Qyby).
£ by ¢
by ¢

The determinants on the right side are called “minors” of the
determinant on the left side. The minor of the element a,, or

Hence

azbz

=a
' a,b,

b, cz\

b, |72 c"+c
b ¢

ag C

:’ 2 , i8 obtained by erasing in the given determinant the row
3
and column in which @, is found. The minor of b, is Z: Z:,

.obtained by erasing in the given determinant the row and col-
umn containing b,. Similarly the minor of b, is : Z’, and so on.

The minors of a determinant are commonly represented by
capital letters. Thus, the minor of q, is 4,; that of ¢y is C;; and
so on. We have, then,

b, ¢

g Cp|, Ba=' a ¢
azca a3 C;

What are the respective minors of a,, ¢, a,, ¢, ¢, ?
In this notation we can write the equation given above thus:

A1= 3 B ) ete.

a b ool
a, b, ¢
@ by .
Hence the value of this determinant can be expressed in terms of
a row (or column) of elements, and minors of these elements.

= alAl bl bl-Bl <+ 6'101.

263. Determinants Expressed in Terms of their Minors. Any
determinant can be expressed in terms of the elements and their
minors from any row or column. For, an examination shows
that such an expression contains all possible products of elements
each taken from every row and column, but never more than one
element taken from any row or column. (See § 256.)
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It remains, then, to determine the signs of the several terms.
In doing this, it should always be borne in mind that the principal
diagonal, a,, b,, c;, d, -+ of every determinant or any minor of it is
always taken as positive. Moreover, if rows or columns are inter-
changed, the principal diagonal of the resulting determinant is
always taken positive. A

Now, any element, as b, (see 4th order determinant below) can
be made to take the place of a;, and its minor, unchanged in
arrangement of its rows and columns, the place of A,, by the
simple device of interchanging rows so that this element falls in
the first row and then interchanging columns so that the same
element falls in the first column. The product of the element
and its minor is then positive. If there has been an odd number
of interchanges of sign, the sign of the determinant has been changed -
and the product of the element and its minor is megative in the
original determinant; otherwise it is positive.

Thus, the sign of the term by,B; is —, since two interchanges of
rows brings b, to the first row, and then one interchange of the
first two columns brings b, to the position of a,.

What sign has ¢,C;? d;D,? a,4,? ¢,C,? ¢;,C;? ¢,C,?

An element in jth row and kth column calls for j+ & interchanges.
Hence, the sign of this element times its minor is (— 1)+~

Test this rule in the following examples:

m b o o
@y by 3| = a4, — b B, +¢,C
az b; ¢ =— a,A, + b.B, — ¢,C;
=—1b B,n + b,B, — baBa
= ¢0—1¢0+c0
% b ¢ 4,
Gy by €3 dy| . .
ay by c5 dy =a, 4, — blBl + G - d; D,

a, by ¢, d, =4, — aydy + 0,4, = a, 4,
= azdy — byB; + ¢,C; — dy Dy
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1. Write in determinant form the minors of the following from
the determinant of fourth order just given: a,; a,; c;; dy; bs; bs
'2. What sign in any order determinant has ¢,C,? d,D,? b,B,?
b;B;? byB3? a,A4,? ¢;Cy? deDg?
3. Express the 4th order determinant in terms of a,, b,, ¢,, d, and
their minors; also in terms of d,, d,, ds, d, and their minors.

264. Exercise in the Evaluation of Determinants of the Third Order
by Means of Minors.

3 6._9 —4 -3 _|2-9], |24
1 |2 —6{:‘3 . SoruTION. SI 7 61_6‘1 6]+.9l1 7|=
1 7 6 8(—8)—6x154+9x18=63. Ans.
1 6 9 4 9 -3 460
2. |7 4 =2f. 3.’—2 1 2|. 4 |2 35|
3 -1 -5 | 1 -7 3 061
1 a—a 2 =z 2 1 2 3
6. la 2 3| 6. |13 —2 1|. 7. 3 —1 4.
al a x —2 4 14z 1l—2 =
142 1 1 a+b  2ab 1
8. 1 14y 1]. K ab at+b 1f.
1 1 142 1 11
Y - 10. The area of a tri-
A angle can be put in the form
of a determinant if it is
given by the coordinates of
B its three vertices.
0 Let OE =2, EA=1y,, OD
5 " = + =y UB=y; OF =1, FC
=y, and A =area of tri-
angle. Then

A=AEDB + ACFE — BCFD
= 3§ (2 — ) (%1 + Yo) + (5 — 20) (Y5 + Yo)— (25— 372)(?/3 + )}

2wl (as may be seen by expanding the determinant

=4|% % 1| 414 the expression above.)
@y Yy 1
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11. Calculate the area of the triangle whose codrdinates are
(2, 3), (6, 4), (8, 10); also that of the triangle whose coordinates
are (3, —2), (6, —11), (4, —9); also of triangle whose vertices
are at (— 6, 4), (11, 12), (4, 0).

265. Exercise in the Solution of Simultaneous Equations Contain-
ing Three Unknowns. Solve the following equations, using the
formulas of § 256 and calculating the values of the determinants
as in the last article, and verify answers. (See § 255, 1.)

22+5y—382=1T7, 224+3y—22z=35,

1. {6x—2y—b6z2=-3, 2. {32—2y+42=16,
3z+Ty+42=—18. 42+3y—2+5=0.
3p+4qg+5r=10, 4m—12n—-20p =9,

8. {4p—-5¢—-3r=25, 4 {(8m —-6n+10p=35,
5p—-3¢g—4r=21 12m —18n —5p=13.

266. Exercise in the Evaluation of Determinants of the Fourth
Order. Referring to the values of a determinant of the fourth
order as given in § 263, we may say that the first value given,
viz., 4, — b,B, + ¢,C, — d,D, is, as a rule, as convenient as any
to use. '

Calculate the values of the following, using the formula just

given:

« 14613 241 1 SoruTIon
1281 1 121 1238

1 21g4=’410.‘4;/p§g,a+214_3216

694 !
1694 194 164 16(.),
=4(9)— 6(— 12)+(~ 17)— 8(— 18) = 145. (By § 264.)

1234 2639 4311
2 1432 3 —1813 . 6112
12341 ) 2618 T 18212
4321 —-12114 6123




290 DETERMINANTS

3.21 4 abcd lab 0c|
5 156 29 2 14 e badc . de 0f
© |16 19 3 17 “ledabd “lgh ik
33 39 8 38 dcbda lmqp

SuacrstioN T0 Ex. 7. Use the elements of column 8 and their minors in
evaluating this determinant since two of these terms are 0.

267. Solution of Simultaneous Equations by Means of Determinants.
Let us take the system of four simultaneous equations :

1) a@+ by +ez + dyu = fi.
(2) a+ by + ¢z + du = f,.
(3) as® + by + e + dgu = fi.
4) ag+dy + ¢+ du=f

By determinants we can eliminate y, z, » in one operation by
multiplying (1) by 4,, (2) by 4,, (3) by 4, and (4) by 4, Thus,

1) a4z + b Ay + e, 4z + d Au = fL4,
(2) A + b Ay + e, A2 + dy Ay = fo4,
(3y) 345 + by Ay + ey Az + dy A = f34,
(41) a dx+ b Ay + e Az + d A= f A,

Subtracting the sum of (2,) and (4,) from the sum of (1,) and
(3)), we have

(04, — a4+ 034, — a, A )x =f1A1 —fidy + 34— fidy
since the coefficients of y, 2, and w each equals 0, as will be ex-
plained immediately.
The coefficient of =, a,4, — a,4, + a4, — a, 4, is by § 263 the
value of the determinant
a, b ¢ d
a b, ¢ dy
as by ¢ dy
a, b, ¢, d,

formed by taking the 16 coefficients of z, y, 2, « in the given equa-
tions as they stand in the equations. We will call this determi-
nant D. Notice that if D = 0, there is no solution. (See § 207, 2.)
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The coefficients of y,"2, and u, viz., b4, — b4, + byd; — b,A,,
4, — cgd;+ ¢ A3 — ¢, 4,, and d, A, — dy A, + dgd; — d,A, are each 0.

For, we can get b, 4, — b, A, + b, 4;— b, A4, by the simple device
of replacing the first column a,, ay, a, @, of D by the correspond-
ing b’s from the second column and then evaluating the deter-
minant by the method of minors. But, whenever two columns of
a determinant are identical, the value of the determinant equals
0 by § 259, 4. For like reason, coefficients of z and u are each 0.

Examining fid, — f,d,+ f, s —Jfid, we see that it can be
obtained by replacing the a’s of the first column of D by the cor-
responding f’s in the right members.

It is clear that the method of this article can be applied to a
determinant of any order. Hence we have the following:

Rule. The value of an unknown obtained from n equations of
the first degree containing n unknowns is a fraction whose denomi-
nator is the determinant of n rows and columns formed from the
coefficients of the unknowns as they stand in the given equations, and
whose numerator s obtained from its denominator by replacing the
column of coefficients of the required unknown by the correspond-
ing known right members of the given equations.

268. Exercise in Solving Linear Equations. (See §§ 255, 265.)

r+2y—3z2+u=4 22—-3y+4z—u=4
22 —y+22—-3u=1 2 4242y-—-24+2u=13
5x—3y—2z—2u=11 " | 2—y+224+3u=17

3e+4+4y—52+6u=—9 3w+2y—z+4u=20

269. Systems of Equations Containing Fewer Unknowns than
Equations. Let us take the linear system

1) a@+by+e=0

2) ez +by+c=0

(8) sz + byy + ¢, =0.
In order that these equations may be consistent, that is, in
order that the same values of 2 and 'y may satisfy all three
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equations, the values of # and y found from solving the system
composed of (1) and (2) when substituted in (3) must satisfy it.
Making this substitution, we have

—a b — G
ay =% b2l 4 p, + =0,
a, b |
ay b, (L) bz
or, a',l‘cl b +b3 ‘-{-c @ b0, (Mult. Ax)
—c by 2
a b ¢
or, ay b2 C =0. (By § 263.)
as by ¢

This last equation is called the eliminant or resultant of the
given system of equations. It expresses the condition that the
given system is consistent.

The method here used for three equations containing two
unknowns can be extended to n linear equations containing n — 1
unknowns. Thus, the determinant formed out of the coefficients and
known terms of n linear equations containing n —1 unknowns must
vanish in order that the given 8ystem may be consistent.

The eliminant can often be determined by what is called
Sylvester’s dialytic method of elimination.

Let (1) a2+ b =0, and (2) ap®+bx+c; =0 be two con-
sistent equations, or equations having the same value of z in both.

The condition for this consistency is easily found by substituting

r=— ﬁ , in the second equation. This eliminant Sylvester found

as follows He multiplied both members of (1) by z, getting (3),
and then had the three equations,

1)  ag+b =0 0 a b
{ 3) a®+ b =0 whose eliminant is |a; b, 0 |=0. -
2) ag® + bz + ;=0 . a b ¢

This method can be extended to equations of higher degrees.
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270. Exercise in Shortening the Evaluation of Determinants.
Before beginning the evaluation of a determinant the student
should propose to himself the following question :

Are one or more of the elements of any row (see § 259, a)
respectively equal to the corresponding elements of another
row, or to the same multiples of the elements of another row ?
If so, substitute for the elements of oné of the two rows the re-
mainders after subtracting, or after multiplying and making them
the same and then subtracting (§ 261, 2). Use,as a rule, the row
or column with the most 0’s to evaluate the determinant by use
of its minors. See § 263 for sign of result.

286 SoruTioN. The elements of the first row can have
1. |1 2 8| subtracted from them twice the corresponding elements
46 of the second row. The elements of the third row can
have subtracted from them three times the corresponding
elements of the second row. In this way we get

2 -2 8-—-4 6-—-6 040 138
1 2 3=l23=—-410=l2. Ans.
4 -3 6-6 9 -9 100
3 6 8 SvacesTioN. Multiply the 2d row by 2 and subtract
2. |1 3 4| from the 1st row, thus getting new 1st row ; multiply 2d
5 13 17| row by 4 and subtract from 3d row for new 3d row.
1 7 6 SuecesTioN. Multiply 18t column by 4 and sub-
tract from 2d column for new 2d column. Then cal-
3. |2 8- culate by using the minors of the new 2d column
312 — elements,
1 4 -2 19 13 16 b+c a a
4 12 8 —6 5. (12 6 9 6: b c+a b
1 -3 2 111 ¢ ¢ a+bd
3342 13 21 4 avgpl
v —-1121 8 15292149 eafp
“l1-2281 11629114 T jwwvap
2442 26 39 1 24 decbda
a+2ba+3ba+44d (a+b)’ c I
10. ‘a+3b a+4ba+5b 11. at  (b+c)} a

a+4ba+5ba+6b bt »®  (c+a)
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271. Miscellaneous Exercise in Determinants. Evaluate the de-
terminants of this article in the best available way.

Solve the two following equations.
3z4+y—2+2u=0,
—~2243y+2—4u=21,
r2—y+22—3u=06,
4r+2y—324+u=12.

3x+4y—2z=5,
42—3y+82=—4, 2.
22+8y—32=5.

1.

8. A problem in the mixture of gases has the following equa-
tions. Solve the system.
) z+y+z=aq,
@) 22+3y+62=0,
B) 22+25y+25z=c.

4. Field’s process for the determination of chlorine, broﬁline,
and iodine has the following equations. Solve them.
(1) 2+y+z=gq,
() 131+ y+2=0,
(3) 1.637T2+1.25y+z2=c.

5. In § 264, 10, it was shown that if (2, %), (2 ¥.), (%3 ¥s) are
the codrdinates of three points, then

MES 1| equals the area of the triangle which has these
5|% ¥ 1| points as vertices. Evidently, then, when the three
x; y; 1| points lie in a straight line, the area of the triangle

equals zero, and the determinant equals zero. Thus the determi-
nant equal to zero is the condition that the points should lie on a
straight line.

Find whether the following sets of points lie on a straight line,
or whether they form a triangle, and if the latter, what is the
area of the triangle: (2, 3), (4,0), (—2,9); (0, —4), (7.5, 2),
B, —16); (1, 7),(26), (—1, —4).

6. Find the area of the quadrilateral whose vertices are at
4, 4), (8, 6), (— 2, 5), and (3, — b) by finding the areas of the two
triangles whose vertices are the first, second, and third points, and
the third, fourth, and first points, and adding them.
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272. Historical Notes. — Determinants were called ¢ result-
ants” by La Place, but Gauss changed the name to the one by
which they are now known. The works of Leibnitz, the co-
developer with Sir Isaac Newton of the Calculus, contain the
germ of the idea of determinants. The first satisfactory descrip-
tion of these functions was published in 1772. La Place,
Lagrange, and Gauss aided in developing the subject, but the
general theory of determinants was worked out first by Cauchy.
Cramer gave the rule by inversions of subscripts for the signs of
the terms. In later times Binet in France, Jacobi in Germany,
and Cayley and Sylvester in England, had much to do with ex-
tending the boundaries of this subject.

James Joseph Sylvester (see frontispiece) was born in London
in 1814 and died in the same city in 1897. In 1837 he was sec-
ond “ wrangler ” in the “ Tripos” examination at St. John’s Col-
lege, Cambridge, but being a Jew, and unwilling to subscribe to
the Thirty-nine Articles, he could not graduate and was ineligi-
ble for a fellowship. However, he got his degree from Trinity
College, Dublin. Soon after leaving Cambridge, he was appointed
to the chair of Natural Philosophy at University College, Lon-
don, where he was associated with his friend, the celebrated pro-
fessor of mathematics, Augustus DeMorgan. 1In 1840 he came to
America to take the chair of mathematics in the University of
Virginia. Here he remained only six months because the ex-
pression of his views on slavery got him into trouble. In 1844
he became actuary of an English Insurance Company. In 1855 he
was elected to the chair of mathematics in the Royal Military
Academy at Woolwich, where he remained till 1870. In the year
1878 he again came to America, this time to take the chair of
mathematics in the Johns Hopkins University at Baltimore, then
just opened, at a salary of $5000 in gold. Johns Hopkins being
chiefly a graduate school, drawing its students from colleges and
universities all over the country, Sylvester was able to give a
remarkable impetus to the study of higher mathematics in Amer-
ica. In 1883 Sylvester returned to England to take the Savilian

COLLINS’S ADV. ALG, —20
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professorship of mathematics in Oxford University, where he
remained until 1893.

Sylvester published articles dealing with algebra in general,
with determinants, partitions, elimination, the theory of equations,
matrices, universal algebra, invariants, and reciprocants, as also
studies in geometry and mechanics. He was the first editor of
the American Journal of Mathematics, to which he contributed
thirty papers, some of great length. When the history of Amer-
ican mathematics comes to be written, the name of Sylvester will
occupy a very prominent and honorable place.



CHAPTER XVIII
LIMITS — INFINITE SERIES
I. LIMITS

273. Limits. The examples of a limit probably most familiar
to the student are those of a cirele as the limit of the area of an
inscribed regular polygon when the number of its sides is in-
definitely increased, and of its circumference as the limit of the
perimeter of the polygon.

Another example is that of 4 as the limit towards which the
terms of the sequence .6, .66, .666, .6666, --- tend.

Still another example is that of 2 as the limit toward which
the terms of the sequence

Li+h14+4+51+3+1+414+5+1+4+ 1 o tend.
From these examples we may get the following definition.

Definition of a Limit. If a variable x assumes a given sequence
of values such that the numerical difference between a constant a, and
the variadble x becomes and remains less than any assignable quan-
tity, however small, then x is said to approach a as its limit.

To express this relation we write = a, read *x approaches the
limit a,” or lim = a (§ 208).
274. Limit of a Ratio. In § 207 it was shown that when =1,

w—1_0_ _ ihoe =1 _
m_l_a_m+1_2. (Smce 1_m+1.)

To get a clear idea of what this means, we think of & as having
a value very close to 1; then it is easy to find by calculation that
2—1
z—

has a value close to 2; also the closer we take x to 1, the
297
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closer does the given function of x approach to 2. Thus, by

bringing  sufficiently close to 1, w_’_—_—il can be made to differ as
m —

little as we please from 2, and continue to differ by as little as we
please. Hénce, by the definition in the preceding article, 2 is the

limit of =1
T —

as « approaches the limit 1. This truth is ex-

pressed by writing
lim £ =1
im

z=l L —

=2,

If the numerator « of a fraction is constant or approaches a
constant @ as a limit (a + 0), while the denominator y approaches
the limit 0, then the value of the fraction is said to become infinite.

If £ is the fraction, then limZ%=co.
. 0y

The symbol oo does not denote a limit, neither does it denote a
definite number. The equation lim u =o should not be read
%y approaches infinity,” and «=oo should not be read “wu equals
infinity,” but each equation should be read ¢ » becomes infinite,” or
“y increases without limit.”

Instead of a variable 2 approaching in value a finite quantity,
as in the first example above, it may become and remain co.

Thus lim 2+1_1
z=0m X
since %’l=1 +;1:, and it is clear by the definition of a limit

that lim(l +};> is 1 since lim 1= 0.

z=w z=0 &

275. Theorems Concerning Limits. The explanations given for
one or two of the theorems following will probably be as satis-
factory to the mind of the student as the formal proofs usually
given. For this reason the formal proofs are not given.

A
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1. The limit of the sum of two functions of = equals the sum of
their limits, provided the latter do not take the form © — .

For, if # and y are two variables and a and b the respective
limits towards which the variables tend, the sum of a — 2 and
b—y, or, (a+b)—(x+y), can be made to become and remain
numerically less than any assignable quantity, however small,
since each can be made as small as we please.

2. The limit of the product of a constant und a variable equals the
constant times the limit of the variable.

For, if # = a — u, = being the variable and a its limit, and m is
a constant, then

lim mz=1lim ma —lim mu. (By 1, above.)

Now, since by definition of a limit, « can be made as small as
we please, lim mu= 0. Hence lim ma = ma.

8. The limit of the product of two variables each of which ap-
proaches the limit 0 is 0.

This may be taken as self-evident.

4. The limit of the product of two functions of « is equal to the .
product of their limits.

Proor. Let a and b be the two limits, and z and y respectively the vari-
ables approaching them, and a —x =% and b—y =o, whence u =0, and
v=0.

Then, lim zy = lim (¢ — u) (b — v)

= lim (ab — av — dbu + uv)
= ab. (By 1, 2, and 3 above )

5. The limit of the quotient of two variables equals the quotzent of
their limits.
Using the notation of the preceding proof, we have

@ a—u a u

] b—v b—v b—v

=%, @ v
-b+b(b—v) b—w
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Then, lim%= %. (By 1 and 4 ab(;ve.)
Y

a. The doctrine of limits can be made to include complex number (§ 83)
values as well as real values. Thus, if @ is a constant and a variable f(x)
assumes a given sequence of values such that |a — f(x)| (the absolute value,
§88, of @ — — f(x)) becomes and remains less than any assignable number,
however small, then f(x) is said to approach a as its limit.

In this case a is & point in Argand’s diagram and f(z) is a variable point
approaching it.

276. Indeterminate Forms. (See § 207.) The principal inde-
terminate forms are 00 —, 0 X0, 0+0, 00 +o. It can be

shown, since (1—)= 0, thatthese may all be made to depend on 0 - 0.
Thus, 0 X o0 may be written 0 X (—1), and o +o0 may be written

—.

0 0

The form g will always result from putting = 0 in evaluating

a rational fraction if the absolute terms, or terms which do not
contain & in numerator and denominator, are absent. To evaluate
such a quantity, arrange the terms in numerator and denominator -
in ascending order; next, reduce the fraction to its lowest terms
by dividing by some power of z; then put =0 in the resulting
fraction.

If the lowest terms in both numerator and denomma.tor are of
the same degree, the limit will be finite and = 0; if the term of
lowest degree is in the numerator, the limit will be oo ; and if the
term of lowest degree is in the denominator, it will be 0.

4r—H522 4 228 4—bx4+ 222 4,

Thus, 1 =i =
Ul e Ts MM T g _gm g
2 __ 3 — .y
lim 8 a3 —Tad—ab = lim 8—Tx—2a8 =§=oo;

zx0 Dt — 426 — 228 L0 bx2—d428 22t O

hma.'“— x‘—h —22 9=
220 T—028 a9 1—6:&:‘z 1
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277. Exercise. Evaluate the following expressions:

23 —Tx 2 o
. - . .1 .
1 lim e T1s ey
ey . 4283
. lim 42+ 54 4 lim 28382
8 lm o 0 bwtila
. 2T 120172
o lim =22 — T . . lip 22— (%
R Y S 6 ,‘_'33 5z_182

II. INFINITE SERIES

278. Definition of Series. A series is a sequence of terms formed
in accordance with some law and connected by the signs of addi-
tion or subtraction.

If the number of its terms is ﬁmte, the series is called a finite
series; and if the number of terms is infinite, the series is called
an infinite series.

The symbol = (read ¢ summation of” or “summation of from
number below sign to number above it ”’) is often used to denote a
geries, 3 being the Greek letter for S, the initial of ¢ sum.”

Thus, Euu=u,+u,+u3+...+u”.
and Eu, = U, 4 U, + Uz + --- to infinity.
n=1

An expanded determinant is of tfxe form 3 + a,b,cy -+

279. Convergency and Divergency of Series. A series is said to
be convergent when the sum of the first n terms approaches a fixed
limit as n is increased indefinitely.

A series is said to be divergent if it is not convergent.

A nonconvergent series in which the sum of » terms though
always finite does not approach a determinate limit is called an
oscillating series, ’
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1
1—=2
the denominator as in long division, we get
1
1—2

Is the series in the right member convergent or divergent ?

1. If is reduced to a series by dividing the numerator by

=1+:c+x’+:c’+...

Sovution. If z = §, the left member of this equation = 2, and the right
member approaches the limit 2 as more and more terms are included.

If =2, the left member =— 1, while the right member increases in
value indefinitely, as more and more terms are taken.

If x =— 1, the series becomes 1 —1+1—1+ ..., and its value is alter-
nately 0 and 1, thus being an oscillating series.

We have here, then, an example of a series convergent for one value of the
letter contained in it, divergent for another value, and oscillating for a third.

2. The series 1+ x4 2?4 2°+ --- is evidently a geometrical
progression whose ratio is . Now if # < 1, that is, if = differs
from 1 by a finite amount, lim 2* = 0, because if a proper fraction
is multiplied by itself in a continued produyct, the multiplicand is
each time diminished by a finite fraction of itself, and the limit
of such a product is evidently 0.

Then, by § 184, the sum of 142+ a2+ «* + x* + ... to infinity is
1__1_—90- Now, it 2 < 1, -1~
series converges to a finite sum.

is a finite number, and hence the

a. The equation in 1 above becomes identically true at any time, of course,
by annexing to the terms of the quotient the remainder over the divisor.

280. Tests for Convergency and Divergency of Series.

1. Comparison Test for Convergency. If the terms of one series
after a certain finite number of terms are equal to or less than the
corresponding terms of another series of positive terms which is
known to be convergent, the first series is convergent.

The truth of this theorem may be taken as apparent, though
proofs are often given.
To show that the first series on p. 303 is convergent we write
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under it the convergent progression of § 184. (See § 279, 2.)

1,1, 1 1 1
2414+ —F —F = F = cee— ...
HlbgtgtatEt GTimt
1,11 1

l+s+ata Toa1

1 1
+ é-‘ + i + .- + eoe

Here we observe that every term of the given' series after the
third is less than the termm below it. To show that this is true
generally, we will compare the nth terms of the two series.
We have, if » > 3,
1 1

(n—1)»1 < 1
2. A series with terms of different signs 18 convergent if the series
Jormed from it by making all the terms positive i3 convergent.

3. Comparison Test for Divergency. If the terms of one series
of positive terms after a certain finite number of terms are equal to
or greater than the corresponding terms of a known divergent series
of positive terms, then the given series is divergent.

Thus, the harmonic* series 1 +} + 4 + } + 4 + .- is divergent.
For, taking two of its terms, as, } and }, then the next four of
its terms, then the next eight of its terms, and so on, we see that

t+i>t+i=hi+i+i+i>4xi=4
Pty t+ o+ e >8 X L =1; ete.
14 i+ i+ 43+ >1 3+ 344+ e

Now the right member of this inequation can be made greater
than any finite number, however great, by taking enough terms
of the series, so that the right member series is divergent.

But the left member series, or the given series, is greater than
the right member series. Hence it is divergent. :

* A harmonic progression is one the reciprocals of whose terms are in arithmet-
ical progression. Thus, the reciprocals of 1, }, , }.-- are 1, 2, 3,4, --.. The
word harmonic was chosen because if a set of vibrating strings of uniform tension
having lengths proportional to 1, }, §, } are sounded together, they produce
harmony.
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4. Ratio Test for Convergency or Divergency. If, m the series
U+ Ug+ U+ - +y,, + %,y + -+, the ratio Y41 approaches a limit

n
k as n increases without limit, then the series is convergent if k < 1,
and divergent if k> 1.
Proor. Let § = t) +us+ s + us + -, and suppose -";:—‘ik<l,
Unt? - k<1, and 80 on,
Unt1 ’
Then 8=t + ta+ s+ - + up[1 4 Yokl | Unt?, Unit
: Up Untl  Un
+ Unts Yntz Unil, | g
Untg Untl Un
Now, because “ntl = g, Ynt?, Unil e go. g0,

Un Un+1 Un
S=uy+us gt +ua[l4k+ A+ ES o]
or, 8= uy+ g+ g+ e + u..(l_%k) (§ 279.)

But we saw in § 279, 2, that converges to a finite nqmbei

1
1-%
when k< 1. This makes the right member of the last statement
a finite number. Hence S is convergent when the ratio is less

than k. But when & > 1,

i 1 % is divergent, which makes the

right member of the statement itself divergent, since S approaches
u!

U+ up+ +1—k

In 144+ 4+ - (divergent), and %+ 45 + -+ (convergent),
k=1. Thus, k=1 may give either convergent or divergent value.

as its limit.

1. The series 1 +1 4 —21—! + % + ‘% + ... i3 convergent, because
1 ,1_ » _ 1
(n+1)! nl n41) a4l

and n >0 gives a ratio less than a number which is less than 1.

2. Series 1+g+g+2—a+ +g‘2+ .. ig divergent, because
1 2 3 4 n

2l‘l+ ﬂ=2_£7_l;'_12> 1, when n>2.

n n—1
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281. Power Series. The series

Qo + 0y + 052’ + ag2® + oo+ + a2 + ooy
in which the coefficients are independent of =, is called a power
series,

Evidently the ratio test for convergency is easy to apply to a
power series. If a power series is convergent for = b, it is con-
vergent for every value of « less than b.

t

282. Convergency or Divergency of the Binomial Series. In the
binomial formula § 194 we put a=1, b==x. Then, the ratio of
the (r 4+ 2)th term to the (r 4 1)th is

n(n—1)(n—2)(n—3) = (n—1) .
1x2x3x4x - (r+1) or (n—nz,
n(n—1)(n—2)(n — 3) ---(n—r+1)x,’ r+1
I1X2X3x4X o XT

Nore. The formula, § 194, gives the rth term, and the last factor in the
numerator is n — » + 2, and the last in the denominator is » — 1. If the
(r + 2)th term is found, the last term in the numerator becomes n — r, and
the last in the denominator r 4+ 1. The (r + 1)th term in the denominator
is found by reasoning in the same way.

L |

Now, ZET:;Im=}i=T;+1m=—m.
r

hence, by the ratio test, if # is numerically less than 1, or if
—1 <z <1, the series is convergent.

A quantity (a + )* can be written a"(l + z)“.

This expression by the proof just given is convergent if
—1<2<1; that is, if —a <z < a.

If distances from O on a horizontal line represent numerical
values, we have on it for ranges of convergency and divergency

Divergent Region ; Range of anvergency * , Divergent Region

—a 0 +a
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283. Exponential Series. The power series
1+ 1 2!

is called the exponential series.
To find whether it is convergent we use the ratio test, dividing
the (n + 1)th term by the nth. Thus,

_ag'_+ —ﬂ=£<1 for all values of n > =.

n! (n—1)! =« A
Thus, the exponential series is convergent for finite values of .
Binomial expansion and passing to limits by the calculus gives

lim (1 + l)""
m=0 m

—lim 1+M+mx(mw—1)L+ ma:(mm—l)(’mE—?)_];_'_m
m— m 21 m 3! m?

f+f+£+...+“’_"+...
3! n!

x  a
1Ta

Thus, the left member above is an expression for the exponen-
tial series. The expression obtained by putting =1 in the left

2 x
= T et Zh (5276,
1+ +gtet gt (§276.)

member, or lim(l + l>“ is commonly denoted by the letter e.
m

2 2, L

x
Then, e”'1+I+2_!+ﬁ+I1+E":+""

From this equation we see why the power series of this article
is called the exponential series.
Putting =1 in the last equation, we get

e=1+i+i+i+drtrint
= 2.71828 (correct to five decimal places).

284. Logarithmic Series. The power series

is called the logarithmic series.
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Dividing the last term written by the one which precedes it, we

have
-1 —
Lo , or (n—1)z
n n-—1 n

Then, lim i"_—nDE=x. (§ 275.)

By the ratio test this series is convergent when — 1 < 2 < 1.

285. Calculation of Logarithms. The logarithmic series can be
used to calculate logarithms. It is shown in the calculus that the
logarithmic series converges to log,(1 4+ ) when —1 <z < 1.

2 P

Then, log,(1+a:)=a:—§+§ T+

To obtain a formula converging more rapidly, we proceed as
follows. Substituting — 2 for z in the formula just written,
we have 2 B o

. log, (1 + #)— log, (1 — z) = Z(x +24

or, log.} *+2_ (w +Z

We now put —— ; whence, z =

1+:c m+1 .
1- m 2m 41

] m+1 =of 1 1 1
Then, log, <2m+1+3(2m+1)'+5(2m+1)‘+ N

or,

1 1 1
log,(m +1)=log, m + 2<2 p— ] +3(2m Ty +5(2m +1)5+ )

By writing m=1, m=2, - in this formula, we get

log, 2 =0+ 2( R TT 1215 >_—_ 0.6931,

1, 1
1 3 = 1- o
og, 3=0.6931 +2(5 e T ) 0986
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Ordinary logarithms can be calculated from natural logarithms or
Napierian logarithms (i.e. logarithm to base ¢) by means of the fol-
lowing theorem.

Theorem. The logarithm of any number to base b equals the
logarithm of this number to base ¢ divided by the logarithm of b to
base c.

Proor. Let n be any number, and z its logarithm to base b.

Then, . b*=mn. (By definition of logarithm, § 159.)
log, n
=_—"¢, (By § 175.
log. b (By § 175.)
or logyn =18 o g p,
log, b

Now, let c = ¢, a.nd b=10. Then

logion = log, n_

l , 10
Also let n =10, ¢ =10, and b = ¢ = 2.71828. (§ 283.)
Then log, 10 = _logio10
. logm 2.71828
=——=2
4343 808.

Hence to get a common from a natural logarithm, dmde the latter by
2.303 or multiply it by .4348 and vice versa.

Thus, logio 2 = .6981 x .4343 (see value .6931 given p. 307)
" =.8010 (a8 in the ordinary log table).

The number .4348 is called the modulus of the common system of
logarithms.

III. THE FINITE DIFFERENCE METHOD

286. The Finite Difference Method finds the successive differences
between the terms of the given series * (called the differences of
the first order); then the successive differences (called the second
order differences) between the terms of the series formed out of
the differences of the first order; and so on with third and fourth,
ete., orders of differences.

This method can be used to find any particular term and also
the sum of a finite number of terms of any given series.

* The word series is here used, as it often is, to mean a sequence.
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Thus, if given series is 183, 28, 83, 43, 53, 68,
or 1, 8, 27, 64, 125 216,
Then, 18t order of differencesis 7, 19, 87, 61, 91
the 2d order of differences is 12, 18, 24, 30
the 8d order of differences is 6, 6 @6

the 4th order of differences is 0, 0

287. To find the First Term of any Order of Differences. Let the
series be ay, a, ay, a4, --- a,. Then by simple subtraction we get
the several orders of differences as follows :

1st order @,—a;, G3—Gy G —0 AG—Qy Ag—ay -
2d order Ay —20+a, @,—20+0ay a;—2a,+ ay -
3d order a,—3a3+3a,—a,, ay—3a,+3a;—ay <

4th order ag—4a,+6a,—4a,+ay, -

The quantities pointed off by commas in the different orders of
differences are called terms. Evidently these terms have for
their coefficients the binomial coefficients, with the signs alter-
nately + and —. Thus, the terms of the second order of differ-
ences have the coefficients for the second power of a binomial, or
1, —2,1; the terms of the third order of differences have the
coefficients for the cube of a difference, or 1, — 3, 3, —1; and the
terms of the fourth order of differences the coefficients of
the fourth power of a binomial,or 1, — 4,6, — 4, 1.

That this rule holds generally can be proved by mathematical
induction as in § 191. Then if d, denotes the first term of the
nth order of differences,

d,=a,, —na,+ 1'&“2—-!—12“.—1 + ﬂ%x'ﬁ)a ete.

n—2"" )
ExamprLE. Find the first term of the 3d order of differences
of 12, 23 32 42, ...,

SoLtTION. d3=16—8X9+8;<2X4—8 x32lx 1 x1=0.
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288. To find the nth Term of a Series. Let d,, dy d,, - denote
the first terms of the first, second, third, .- orders of differences.
From the preceding article we get the left column equations below.
The right column equations are obtained by substituting values
from the left column after transposing.

dl=a,2-~a, a2=a'l+dl
h=a,—20+a ay=a, +2d, +d,
h=a,—3a,+3a,—a, a,=a,+3d, +3d,+ d,

d=a—4a,+6a,—4a,+a, as=a,+4d, +6d, +4ds+d,

From the values given at the right we see that the value of a,,
or the third term of the given series, has the first term of the
given series for its first term and the several first terms of the
different orders of differences arranged with the binomial coeffi-
cients of the second power; the fourth term a, has a similar value,
but with the binomial coefficients of the third power; and so on.

Generalizing the result (a proof by mathematical induction can
be given), we see that the nth term Wwill have the binomial coeffi-
cients of the (n — 1)th power. Thus,

a, = a, + (n—1)d, +(n—1%('n—2)d2+ (n—i)(n?,—'Z)(n—3)d’+

ExampLE. Find the 10th term of the series 1, 5, 15, 35, 70,
126, ...

SoLuTION. , b5 15, 386 70, 126

18t order of differences 4, 10, 20, 85 56

2d order of differences 6 10, 15 21

8d order of differences 4, 5, (]

4th order of differences 1, 1

5th order of differences 0

Substituting in the formula for a,, we bhave d; =4,d; =6, dg =4, di =1
ds =0. Then,
am=1+9x4+92"8x6+

OIx8xT Ox8xTx6
4 1=T16. Ans.
2x8 <t axsxs * Ans

289. To find the Sum of n Terms of a Series, a;, ay, @ - a,.
To find the sum of this series we write down first an auxiliary

geries as follows:
0, @y Oy + sy Oy + Gy + Gy Oy + Uy + G+ Gy 2y G+ A+ +o0 + 0
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Getting the first order of differences of this series, we have
Qyy Agy Agy Qg Agy *2° Qoo '

But the series 0, a,, @, + a,, --- evidently has for its fourth term
the sum of the series a,, a,, a;; and for its fifth term the sum of
the series a,, ay @y, a,; and so on; and for its (n+ 1)th term
the sum of the series a,, a,, a;, @,, @ -+ a,. The preceding article
tells us how to find the nth term of any series; hence to find the
sum of n terms of the series a,, a,, a,, -+ @,, we must find the
(n + 1)th term of the series 0, a,, @, + @y, a; + g+ @y -

It shopld be noted that the second order of differences of the
auxiliary series is the first order of differences of the series whose
sum is to be found; the third order of differences of the auxiliary
series is the second order of the series whose sum is to be
found ; and so on. ‘

In the light of the preceding statements we see that to find the
sum S, of n terms of the series a,, a, a, --- a, we must make the
following substitutions in the formula of § 288:

n+1 forn; nforn—1; n—1 for n —2; and so on: 0 for a,;
a, for d,; d, for d,; and so on. '

Substituting these values, we have

S =0+ml+n(n2— l)dl_‘_n(n—;)!(n—Z)d’_'_
" !

ExampLeE. Find the sum of n terms of the series of 13, 22,
32, 42, ... o )
0% F .

SoLuTION. 1, 4, 9, 16, 25

0, O
Here we have @) =1,d; =8, d2 =2, ds =0. Then,

S,.:,,+n(n2— 1) x3_*_n(n—I(Z(n_‘z)x2

=(6n+9n2—9n+2n8—-6n2+4n)+6
=(2n3+3n2+n) +6=n n+1)é2n+1 . Ans.

COLLINS’S ADV, ALG. — 21
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290. Exercise on Limits and Series. Evaluate the following
expressions : :

. 4 —TaP 42 220 —Ta?
, lim 2 T, 4T — (T,
e Y ¥ 2 lm s
8. Show that '1‘1_12 (n 1),
~ 4. Prove that 1 + +—=+— 1 + --- is convergent by

2 2 3 2.3-4
comparing it with the convergent geometric series

1 1
1+2+2 ste et

+ 3,+ + --- is convergent by the ratio

1.2
h th
. 5. Show that 3+3, 3
method. _
8. Show that -1—+ 1 1 =+ .- converges to unity.
1. 2.3 3 4

SuaersTiON. Since, e.g. _1_ (1 1) the series may be written :

2x8 \2 8
1 1 1 1 1 1
1—2 -, E -
( 3)* (2 5)*(5- Gt
Canceling terms, we get 1 — —1—1 Find the value of this expression
when n = n+

7. Show that 212 +312+%5+--- is cohvergent.

8. Show that } +1+ 4+ 4+ -.- is divergent.

SorurioN. }+31>4; (41>t h+ At A+t A>i A+
+ &+t H+dh+>1 Nowi+}+4+1-.is divergent. Hence, -.-

9. Show that for no ﬁnite va.]ue of = is

1
a: = + o] + z_-}-—2 + --- convergent.

SvaeesTION. Letz =0, 1, 2, ... and compare with a known divergent
series.
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1

1
31 (2n+1)!+

31 ..+is convergent.

1.1
10. Show that +5_!+ﬂ+"'+

1 1 1 -
11. Show that — + — 4+ —— 4 ... is divergent.
Vit V3T Va s

12. Find the first term of the third order of differences of the
series 1, 3, 6, 10, 15, etc.

13. Find the first term of the fifth order of differences of the
series 1, 4, 4, 4, & -

14. Find the 9th term of the series 1, 3, 6, 10, 15, -...
" 15. Find the nth term of the series 2, 6, 12, 20, 30, ...

16. Find the 9th term of the series

2xb6xT7, 4xTx9 6x9x11, 8 x11 x 13, ete.

17. Find the 16th and nth terms of the series 1 x 2, 3 x 4,
5X6, . '

18. Find the sum of 10 terms of the series 12, 22, 32 42, ....

19. Find the sum of 18 terms of the series 3, 11, 31, 69,
131, ....

20. Find the sum of » terms of the series formed by the cubes
of the natural numbers commencing_ with 1. ,

21. Find log,4 by substituting in the formula of § 285; find
also log, 5 in same way. Then find log, 6 by adding logs of 2 and
3. Then find log, 7 by substituting in the formula.

22. Find the Briggsian or common logarithm of 3 from its
Napierian logarithm ; also that of 5. Check answers by reference
to the common logarithm table.

23. Find the natural logarithm of 7, 57, 1974.

291. Historical Note. The French mathematician Baron Au-
gustin Louis Cauchy was born in Paris in 1789. In his youth the
great mathematicians, Lagrange and La Place, were in the height
of their glory. In works of wonderful breadth and rigor they
had put almost the finishing touches on the theory of celestial
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mechanics of their day, and they had helped in the construction
and introduction of the metric systemn. Both men took an interest
in young Cauchy and persuaded him in 1813 to give up the pro-
fession of engineer and turn his energies to the advancement of
pure mathematics. He secured a position in the Ecole Poly-
technique at Paris, which he held till 1830. When, on the acces-
sion to power of King Louis Philippe, he was required to subscribe
to oaths of allegiance, he refused to do so. Soon after this, he was
appointed to the chair of mathematics in the University of Turin,
Italy, and later he became the tutor of the grandson of the deposed
King Charles X of France. This position enabled him to travel,
and thus meet many mathematicians. In 1838 he returned to
France and was offered a position in the Collége de France, which
he refused. In 1848 he again took a professorship in the Ecole
Polytechnique, which position he retained till his death in 1857.

Cauchy’s writings (treatises and contributions to scientific
journals totaling in number 789) cover the whole field of mathe-
matics and are characterized by great clearness and rigor of treat-
ment. They exercised a great influence over his contemporaries.
In addition to his three great works, the ¢ Course in Analysis,” the
“Infinitesimal Calculus,” and the “ Application of the Calculus to
Geometry,” he wrote a book on higher algebra. His main contri-
butions include studies in the determination of the number of
real and imaginary roots of an algebraic equation, studies of con-
vergency of series, of the theory of numbers, of complex numbers,
of the theory of groups and substitutions, of the theory of functions,
of differential equations, and of determinants. It was Cauchy’s
paper in 1841 that brought determinants into general use. He
cleared up difficulties in the Calculus by means of the theory of
limits and the doctrine of continuity. In the application of
mathematics to natural science also, his contributions were highly
important. A complete edition of his works has been issued by
the French government in 27 volumes.
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CHAPTER XIX

UNDETERMINED COEFFICIENTS — PARTIAL FRACTIONS —
CONTINUED FRACTIONS

1. UNDETERMINED COEFFICIENTS

292. Undetermined Coefficients. Many times, in mathematical
investigations, power series are introduced with coefficients unde-
termined. The problem then is to find these unknown coefficients.

.ExampLE 1. Find a polynomial of the second degree, ax®+
bz 4 ¢, which equals 1 when =0, equals 2 when & =1, and equals
9 when z=2.

SoruTioN. Substituting z =0, 1, 2, in turn, in ax? + bx + ¢, and setting
the results equal respectively to the numbers given in the problem, we have

(1 e=1
@) a+ b+c=2.
® 4a4+2b+c=9.

Substituting ¢ =1 in the last two equations and solving them by the
method of § 43, we have a =3, b =— 2. Hence
822 —-2x+1
is the polynomial sought, as may be easily verified.

a. Had we taken mx + n instead of ax? + bx + ¢, we should have obtained
the inconsistent equations (1) n =1, (2) m + n =2, (8) 2m + n =9, show-
ing that the problem is impossible in this form.

But had we taken ax3 + bx? + cx + d instead of ax? 4+ bx + ¢, we should
have obtained three equations to determine four unknowns, and the problem
would have had an infinite number of solutions.

Exampie 2. Express22?+3 2+ 5 in terms of powers of x 4 2,
that is, in the form a(z + 2)* 4 b(x +2)+c.
Suacestion. Expand the latter expression and arrange it according to

the powers of . Then, setting the two given quantities equal to each other,
316
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make the coefficients of 22, , and the known terms respectively equal to
each other. 2(x+2)2 —-6(x +2)+17. Ans.
We see, in the preceding examples, that certain conditions are
given, and the problem is presented of finding whether there exists
a function of a specitied form that will satisfy the given conditions.
This method can be used in simple multiplication, long division,
factoring, and fractions. In such cases we usually know what
form the answer will take. Thus, instead of dividing, we can set
Z=32- 10—+ Bo+ 0, and find B and C by the method of
x—
this article.
We proceed now to study under what conditions the rule about
equating coefficients on both sides holds true.

Theorem of Undetermined Coefficients.

If po+ pi® + po2® + p® + - = @ + @ + @22 + q2* + - for
every value of x that makes these series converge, the coeﬂict’enta of
like powers of x are equal, or o= qo, Pr = q1, P2 =q2» P =G

Proor. Transposing the right member to the left, and arrang-
ing, we have,

1) (Po— @)+ (P — @)z + (P2 — ¢)2* +(Ps — G:)2* + -+ =0.
For convenience, let py— g, =ag, p, — ¢, = a,l, ete. Then,

@ a+ a2 + a2’ + a +

for every value of « that makes the left member converge.
Setting £ =0, we get a,=0. Then,
®) az + 0’ + @’ + - =0,

for every value of = that makes the left member converge.

Now it is assumed that x has other values than 0, so we can
divide by x (§ 200, 4), getting

4) 4 + ax + a2’ +a@’ 4 o0 =
which holds true for every value of # that makes the left member
converge, except possibly z = 0.

But it follows from this that a, = 0, since if a, # 0, by taking =
small enough, but not equal to 0, we can make the value of



318 UNDETERMINED COEFFICIENTS

a2 + a2 + a2 + .- numerically less than a,, and such a value of
% would not satisfy (4).
In the same way it can be shown that a,=0, a,=0, and so on.
Now, since py—qo=ay=0, p, — = =0, p, — @ =0a, =0, and
80 on, we have py=qq, p; = q1, P» = ¢5, Ps= @3, and so on, which was
to be proved.

.

293. Reversion of Series. It often happens, if x is expressed as
a power series in y, that we may want to express y through a
power series in x, thus making y instead of x the independent
variable. (§ 213.)

Suppose we have given

¢} @ =my + ny* +py’
in which m, n, p are given coefficients, and we desire to find a,, ¢,
so that .

@ y=ax+ba+ ez’ + date...

To solve this problem we use the method of undetermined co-
efficients. By substituting the value of y from (2) in (1), we have

2 = m(ax + bx? + cx*)+ n(ax + b + c&*)? + p(ax 4 ba? 4 ca®)?,

or, =max +(mb + na?)x?+ (mc+ 2 abn + pa*)a* + ---.

Equating coefficients, we get

ma=1; mb+na*=0; mc+ 2 abn + pa*=0;

. .-.a=1; mb+l=0; mc+2ﬂ+-]l=0;
m m? m  m
. n,o, ., _2n—mp
.'b=_;@_3’ ..L——m5——‘
Hence, y=2_1, @n—mp)s ,
m m mb '

1. Find y in terms of « from the equation =y + y*+ y* by the
method used above, and check the answer by substituting in the
formula just obtained.

2. Find y in terms of « from z=1—-2y+3 3%

SuccesTioN. Transpose 1, getting x — 1 =— 2y + 3y2, and put z=2—1,
whence z =— 2y + 8y2 Then, with 2 =—2y + 3y3, proceed as before.
Last of all, replace 2 by & — 1. .
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II. PARTIAL FRACTIONS

294. Application of the Theorem of Undetermined Coefficients to
Decomposition of Fractions into Partial Fractions.

Partial fractions are fractions which when added together pro-
J duce a given fraction. The operation of finding partial fractions
is thus merely the converse of addition of fractions.

41
@—2)(z—3)
z+1 —_4 B (In which 4 and B are
(x—2)(x—8) x—2 2z—3 undetermined numbers.)
Then, x+ 1=A4xr—3 A4+ Br— 2B, (Mult. Ax.)
or, z+1=(4+ B)x— (34+ 2 B). (Arranging and factoring.)

1. Given , to decompoée it into two fractions.

SoLuTtioN. Let

Now, by the theorem of undetermined coefficients, since in such fractions
any letter can have any value (providing no denominator becomes 0), the
coefficients of x on the two gides of the equation are equal, and the terms
that do not contain x are equal. Then,

(1) A+B=1  (2) —84-2B=1
Solving these equations by § 43, we get A =— 3, B=4.
x+1 4 3

Herve,

(x—2)(x—38) z-— 3 z—2
Prove the result correct by addition of fractions.

Resolve into partial fractions and prove:

3xz+8 . 3 z4+1 - 4 142
"4+ Tz 46 " —Tx412 T x—a”
f x? SuccestioN. When there are three

5. .
(x+1)(x—1)(w—z2)  different factors each of the first degree in
the denominator, there is a partial fraction
.‘ for each, the letter C' being used for the third numerator.

24+9x +6 A Bzx+ C
. If v+ - find 4, B, C.
6 (z—1)(*+22+5) z—1 2242z+4+5 nd 4, B,C
a. Three cases in partial fractions nqqd to be recognized.

I. When all the factors of the denominator of the given fraction are of the
Jfirst degree and different.

Such problems are solved as Exs. 1-6.
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II. When a factor of the denominator of the given fraction is a prime
quantity of the second degree.

The partial fraction corresponding to it must have a numerator of the
form Bz + C as in Ex. 6.

III. When a factor of the given denominator i8 a power.

Suppose #? and (x —2)2 are in the given demominator. Then a fraction

4B C _D

z' 28 x—2" (z-—2)%
Evidently all these forms are possible parts of a decomposed fraction ;

therefore we assume they exist and give them coefficients. Any of such co-

efficients, of course, can be zero.

must appear for each power of both factors: as

1. 62:’—8a7’—4x+1. 8. ?+1 .
oz —1)? (x—=1)(=*+2x+1)
B?+e+1 4 B c
W' SuGGESTION. oy + @ l)’+ G-
?—z41 1
10, ——MM—,. 11, ——.
@+1)(z—1)° ®—1

CONTINUED FRACTIONS

295. A continued fraction is a fraction of the form in the margin.

a+ b Notice that b is a numerator and all below
o+ d the line underneath it is the corresponding
e+ S denominator, and so with d, f, ete. . )

g+ - Continued fractions are either terminating,

or infinite (non-terminating). When all the numerators of a ter-
minating continued fraction are 1 and all the signs are +, it is
called a simple continued fraction. To save space

1 is written __I._.Li. oo

a+ 1 a+ b+c+
b+ or, 1 1 1 ceo

c+ - a+b+c+

The expressions at the right are easily distinguished from
1

=+ ]_l; +% + :+- by the position of the 4 signs.
a
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296. Reduction of Rational Fractions to Simple Continued Frac-
tions, and the Converse Operation.

1. Reduce 1% to a simple continued fraction.
We begin by dividing both terms of the given
fraction by 97, getting T:;_f’ or, —1—— Then

SorutioN. 97)137(1 W
9T 97 97
40)97(2 we divide both terms of 40 by 40; and so
80 continue. o7
17)40(2
3 Lo 1
6)17(2 RTINS 1
1_2_ 2+ !
5)6(1 24+ 1
5 2+ L
1)6(6 141
5 6
111111
T142+42+24+1456

Evidently 1 is the numerator of each fraction and the several quotients in
the continued division at the left above are the integral parts of the several
denominators of the contined fraction.

The correctness of the answer found can be checked by calculating the
value of the fraction, commencing with the lowest or last fraction and working
backwards.

Check. 1+§=§;1+2+D=1r;1+C+M=H;1+C+)=4#;
1+(1+ )=y

Reduce the following fractions to simple continued fractions
and check the results by reducing the answers back to simple
fractions. (The student will do well to use the old notation along
with the new until he becomes familiar with both.)

2. 3% s 345 HE 855 3175 A

297. Approximate Values of Continued Fractions. By ignoring all
but the first, all but the first two, all but the first three, and so on,
of the simple fractions in the standard form of the continued
fraction, approximate values of the continued fraction and of its
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equal simple fractian are obtained. In this way we get from

1111 11 97 .
— = = = = Z[=2_) the foll al :
1+2+2+2+1+5( 137) e following values

101 1211151 11 1_12
17142 8 14242 7 1424242 17
1111 11711111 1_97
142424241 24’ 14242424145 187
1 = 1.0000
1 Reducing the valuey just found to decimals, we
2 _ 6667 have the figures in the margin at the left. Examin-
8 ing these figures, we see that the first approximation,
5 = 7143 1.0000, is too large; the second, .6667, is too small;
7 the third is too large; the fourth is too small; the
12 _ 7059 fifth is too large ; and the last is the exact value of
17 the given continued fraction correct to four decimal
17 _ 7083 places. We see also that each new value is closer
24 than the preceding to the true value.
97 _ 7080 '
* 187

In full treatments of the subject of continued fractions it is
shown by using letters that what is true of the example just given
is true in general, viz. that the odd approximations to the value of a
continued fraction obtained by dropping terms are all too large and
the even approximations are all too small, and that each new approxi-
mation is closer to the true value than the preceding approximation.

298. Recurring continued fractions are continued fractions in
which a group of successive denominators is repeated in regular
order indefinitely.

111111 111
34+5+3+54+3+5+" “at+btc+’
The part in the second example between the dots, which is to be
repeated, is called the period of the continued fraction.

An interesting truth concerning these continued fractions is
that every recurring continued fraction is a root of a quadratic, and
conversely.

Thus,
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Suppose, for example, that
i1 11 1 1

=a+d " " T et btrard+

Evidently, by definition, the quantity added to b in the last
denominator is z itself. Then,

1
m=;—T, or, x ﬁ:i, or, ax® 4 abx — b = 0.

b4

Hence, the value of the continued fraction 1. is a root of
the quadratic equation ax® + abx — b=0. b

In the same way it can be shown that a continued fraction with
a greater number of simple fractions in its period is likewise the
root of a quadratic.

. By substituting 4 for @ and 6 for b in the formula found above, we have
1 1
148
easily found by solving the quadratic to be V10,6 — 8.

. ag the root of the quadratic 422 + 24 £ — 6 =0, and its value is thus

To show that the converse of the above theorem holds true, viz.
that every root of a quadratic is a recurring continued fraction, we
will apply the process which reduces the root of a quadratic to a
recurring continued fraction to the result just found. Rational-
izing numerators (see § 75, 4, and § 29), we get

vios-3__ -1 _ 1 _ 1
1 2+4V105 4 §VI06-2 4, 1
1 V105 4+ 3
= 1 i1
1 T4+6

—
6+ (V105 — 3)

Similarly any irrational number, as V3, can be reduced to a
recurring continued fraction.
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Thus, since v/3 = 1 + a decimal, we write

v3=1+V31—1=1+__?_.

Then, since V3 +1 =2 + a decimal, we write

. 2 2 2
Vi=l+—2 1y 2 1y
24 V3-1 g, 2 2+ —2
1 Vi+1 9+ V3—-1
» 1
2 2 2
_1.+§+§+§...,

299. General Remarks on Continued Fractions. .It can be shown
that any number, commensurable or incommensurable, can be ex-
‘pressed in only one way by a continued fraction, either terminating
or infinite. Every commensurable, or rational, number can be
reduced to a terminating continued fraction.

The general theory of continued fractions has been used to
prove that = and e (the base of Napierian logarithms) and integral
powers of them are incommensurable.

The ancient Greeks thought the ratio of the circumference to
the diameter of a circle ought to be capable of being found exactly,
and the search for this value was one of the three great problems
of antiquity. It was not till towards the close of the nineteenth
century that = was shown to be incommensurable.

Continued fractions have been used in the solution of indeter-
minate equations (§ 49). Lagrange used them in the solution of
equations of degrees higher than the second.



CHAPTER XX

COMPLEX NUMBERS

300. Different Kinds of Numbers and Number Systems. The
different kinds of numbers can be made to appear as arising from
the solution of different species of equations.

If a is a positive number, the attempt to solve z 4+ a =0 gives
rise to the negative number —a. If a and b are integral whole
numbers, the attempt to solve ax F b =0 gives rise to the rational
fraction + %. _If a is a positive number not a square, the attempt
to solve 2 — a =0 gives rise to the irrational number Va. If a
is'a positive number, the attempt to solve ¥ 4 a =0 produces the
pure imaginary vV —a. The solution of an equation of the form
2*+ax 4 b=0 may give rise to roots of any of the preceding
kinds, and also to two more kinds, viz. a+ V3 and a + V' — b, the

-first being partly rational and partly irrational, and the second,

partly real and partly imaginary. The attempt to solve equa-
tions of the fifth and higher degrees (see end of § 115, p. 126),
exponential equations (§ 175), ete., fails in the sense that such
roots cannot always be expressed in terms of any or all of the
kinds of numbers just described.

If a, b are integers the preceding can be tabulated as follows:
24 a=a defines 0.
2 —a =0 defines the natural series of numbers.
24 a =0 defines negative numbers.

ax F b=0 defines rational fractions.

2* — a =0 defines surds.

LA S A o

2?4 a*=0 defines pure imaginaries.
326
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7. a*—b=0 defines one type of transcendental quantities.*

1
8. z"+a =0 defines what are called Riemannians.}

301. Addition and Subtraction of Complex Numbers was ex-
plained both algebraically and graphically in §§ 83, 86, 87. In
order to explain the multiplication and division of these numbers,
some trigonometrical formulas are needed. For this reason the
discussion of this portion of the subject of complex numbers has
been deferred until now.

For the convenient graphical explanation of the multiplication
and division of complex numbers another form of them, called the
polar form, is needed.

302. Polar Representation of Complex Numbers. If the complex
number x+ iy denotes point @ on the diagram, » denotes the
length of the line from the
origin to point a, and the
Tawtiy Greek letter 6 (theta) de-
notes the angle this line
Y makes with the X-axis, OX,
, ) then (§ 150)
=17 cos 6,
y=rs8iné,

Y

M

and
x4 ty=rcosf+irsinf
Y’ =17 (cos 6 + ¢ sin 6).
Thus, r and @ can take the place of z and y in locating points on
a diagram, and they are called the polar coérdinates of a point.
The angle 6 is called the amplitude of the complex number, and
r is called its modulus (see § 88), or absolute value.

303. Reduction of Complex Numbers from One Notation to the
Other.
If r and 6 are given to find « and y, we have,
(1) x=rcos 6; (2) y=rsin 6.
* See footnote, § 319. t See Chrystal’s Algebra, Vol. II, p. 238.
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If x and y are given to find » and 6, we have,

(8) tan o=g ; @) r=Va ¥y
=Y . (Since sin 6=Y,
or, ®) r=o 9 (Smce sin 4 r>

304. Exercise in Reducing from One Notation for Complex Num-
bers to the Other. Reduce the following from the ordinary to polar
codrdinates using the trigonometrical table found on page 164.
Only angles in the first quadrant are given.

1. 3424 2 4461 8. T4+1474.
4. 9404 6. 141 6. 0434

Reduce the following to the ordinary notation.
7. 6(cos 30° + ¢ sin 30°). 8. 4(cos 19° 4 7 sin 19°).
9. 12(cos 45° + ¢ sin 45°). 10. 10(cos 12° 30’ 4- ¢ sin 12° 30").
11. 15(cos 18° 47' + 0). 12. 25(0 44 sin 47° 18"),
'305. Multiplication of Complex Numbers.
Let a + bv/— 1 and ¢ + dvV— 1 be two complex numbers.
Then, since V—1 X vV —1=—1by definition (see § 83),
(@ +dV=1)(c+ dv—1)=(ac — bd)+(ad + bc)vV—1,
or the product of two complex numbers is a complex number.

Perform the multiplication in the following in which ¢ is put

for v —-1.

1L B+40)C+T4). 2. (T—60)8+24).
8. (12—5i)x 3. 4. 643 —123).
5. (2—d)P (§53) 8. (a— bih

7. (2 — 344 —20)6— i)(8 + 39).

Before taking up the graphical multiplication of complex num-
bers, it is necessary to prove a theorem in trigonometry.
COLLINS’S ADV. ALG. — 22
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306 The Addition Theorem. This theorem is usually expressed
B by a formula that gives the sine of the sum
of two angles in terms of the sine and cosine
of each.

Let COB be the sum of the angles a and

A b (see figure), and let radius OC=1.

b ¢ ¥ Drop a perpendicular BF from B on 04,

ol and draw BD and FE perpendicular to

o D E 0C, and GF parallel to OC.

(Deﬁnition of sine DOB,§ 150,
and because O0C= 0OB=1.)

Q

We have, sin (a+0) = -, = __D

{cos (a+b)= O— = 0D, (Definition of cos DOB.)

and sin b= »gg = FB; cos b= g—B =OF. (Since OB=1.)
Then, from the triangle FOE, we get
EF_ EF OE _ OFE
== d ==
sin a= OF  cos p AN B =R tos b

.. EF=sin a cos b; (Mult. Ax.)
and OE =cos a cos b. (Mult. Ax.)

But 4 GBF =/ DOH. (Since each is the complement of
one of two vertical angles at H.)

Also, from the triangle GBF, we get

sin a=g—F GF, and cosw_-B—G_ BG .

BF sinb BF  sind’
.. @F =sin @ 8in b; (Mult. Ax.)
and BG =cos a sin b. (Mult. Ax.)

Then, since

sin (a + b) = DB=EF+GB, (By first eq. above and from
the figure.)



COMPLEX NUMBERS 329

@ sin (a + b) =sin a cos b + cos a sin . - (By substituting
for EF and GB their values, p. 328.)

and since cos(a +b)=0D =O0E — GF. (From figure.)

) cos (a+ b)=cosacos b —sinasinb. (By substituting
for OF and GF their values, p. 328.)

¥ 307. Graphical Representation of the Product of Two Complex
Numbers.

To explain the geometrical sig-
nificance of the product of two com-
plex numbers, we first reduce the
complex numbers to the polar form.

Let P, =r(cosf + ¢ sin 6))
and P, = ry(cos 0, + ¢ sin 6,)
be any two complex numbers locating
the points P, and P, on the diagram. b

Then, P,P;=r(cos 6, + ¢ sin 6,) X r,(cos 6, + ¢ sin 6,)

= 7,7, [(cos 6, cos 8, — sin @, sin ,) 4 (sin 6, cos 6, + cos 6, sin 6,)]
=nrr,[cos (6, + 6;)+ < sin (4, + 6,)]. (By § 306, (1) and (2).)
Thus, the modulus 7,7, of the product is the product of the moduli

of the two factors, and the amplitude, 6, 4 0, i3 the sum of the ampli-
tudes of the two fuctors.

Referring to the figure we see that OP is r,r,, and XOP =6, + 0,.
Point P is thus the product of points P, and P,

308. Exercise in the Multiplication of Complex Numbers
Graphically.

Construct, graphically, with a protractor and scale, the factors
and products of the following changing numbers given in the
ordinary form to the polar form.

1. 3(cos 15° 4 i 8in 15°) X 5(cos 22° 4 7 sin 22°).

2. 4(cos 12° 4 7 sin 12°) x 2(cos 42° + 7 sin 42°).
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3. (4+29)(2+30). 4 (1+i)@A+49).
5. 6(cos 15° + 1 sin 15°). 6. 4(12+164).

The exercises given purposely avoid negative signs for the co-
ordinates of both real and imaginary points. The rule given in
the preceding article holds, however, for angles of all sizes.

309. Powers of a Complex Number Expressed in the Polar System.
De Moivre’s Theorem. We have just learned that the product of
two complex numbers is a complex number whose amplitude is
the sum of the amplitudes of the factors, and whose modulus
is the product of the moduli of the factors. Evidently this rule
can be extended so as to apply to the product of any number
of factors, and in particular to any integral power of a complex
number. Hence (n being integral or fractional),

[r(cos @ + ¢ sin a)]* =" (cos na + i sin na).
This formula expresses what is called De Moivre’s Theorem,
which is widely used in higher mathematics.
1. Construct [2(cos 10° + ¢ sin 10°) ]2
2. Construct [12 (cos 40° + 1 sin 40°)]%.

310. Solution of Equations of the Form x" + m =0 (in which m
may have any value real, imaginary, or complex) by trigonometry.
Let " =17(cos a + ¢ sin a). ‘

1
Then, x= 'ri(cos % + ¢ sin s) Ans. (By equation of pre-

1 ceding article.)
Here ™ denotes the arithmetical nth root.

Find and construct graphically an imaginary root in the follow-
ing, using the table on p. 164 and the logarithm table, pp. 176, 177.
1. 2®*=4(cos 20° + ¢ sin 20°). 2. zt=12.

Sua. To Ex. 2. Write 26 = 12(cos 860+ 7 sin 360°) since cos 360> = cos 0°
=1, and sin 80° = 8in 0° = 0. Extract root of coefficient by logarithms.

3. =27 4 =76, 5. «’=128.
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311. Division of Complex Numbers. (See § 83, Ex. 22, 23.)
Perform the following simplifications in complex numbers :

2480, 1—i g i 4. B+40

e gy " 1t20 v C T

312. Graphical Representation of Division of Complex Numbers.
Since the product of two complex numbers is a complex number
whose modulus is the product of the given moduli and whose
amplitude equals the sum of the given amplitudes, it may be
inferred that the quotient of one complex number divided by
another has for its modulus the quotient of the dividend modulus
divided by the divisor modulus, and for its amplitude the divi-
dend amplitude minus the divisor amplitude.

313. The Complex Number System a Closed System. We have
seen that the sum, the difference, the product, the quotient, the
power, and the root of complex numbers is always a complex
number, or, what we may regard as special cases of a complex
number, viz., a real, or a pure imaginary. This was not true of
the other kinds of numbers, as explained in § 300.

314. Historical Note. J. R. Argand, who was born in Geneva,
in 1768, developed the geometrical interpretation of complex num-
bers and published in 1806 an account of them similar to that
given in this chapter. Wessel had developed the same general
idea in 1797, and the Abbé Buée in 1804, though not so fully as
Argand. These results remained unnoticed by mathematicians
until 1813, when Argand published an account of his studies, ex-
tending them somewhat, in ‘Gergonne’s Annales. He gave a proof
of the existence of n roots, and no more, of every rational alge-
braical equation of the nth degree with real coefficients.

Later, in the writings of Gauss and Cauchy and many others,
the Argand idea was developed into the important theory of com-
plex numbers, which takes a very prominent place in the theory
of functions, this theory of functions including a vast range of
mathematical study.



CHAPTER XXI
GRAPHS OF HIGHER EQUATIONS. APPLICATIONS

315. Functional Relations Expressed by Graphs. Reread § 213,
which explains that when one quantity, y, varies as another, , the
former is called a function of the latter. A graph can be used to
express the continuous relationship between the two.

Thus, if y= no. of feet a falling body has
moved, and z = no. of seconds it has fallen from
rest, the formula, s = } gt2, gives y = 16.08 22 by
letting y = 8, z =¢. The distance moved through
is thus a function of the time. Constructing the
graph y = 16 22 (using 16 for 16.08), by taking
a centimeter as the unit on the JY-axis, and a mil-
limeter as the unit on the Y-axis, we have the I
graph in the margin.

From this graph we can read off, as in § 181,
the distance for any given time, or the time for
any given distance. Thus, find the time for 10 ft.;
30 ft. ; 70 ft.: also find the distance for 0.6 sec. ;
1.2 sec. ; 1.6 sec.

Similarly, the graph in § 131 expresses the area,
y, of a square as a function of one side, xz; and
that in § 134 the volume, y, of a cube as a func-
tion of x, one side. In § 129 the y quantity in
each case is a function of the x quantity.

]

316. Construction of the Graph y —ax"
for Different Values of @ and n. Here y is
regarded as a function of z.

1. Construct the graphs for y = % and  18ec. 2 8ec.
¥y = 2 22 on the same diagram. The graph for y = 2* was given in
§ 131. Evidently for the equation y= 2 a? each value of y will
332
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be twiee as great as for y = a2 so that point a (Fig. § 131) will be
at (1, 2), and point b at (2, 8), and soon. Thus, the graph of y=2 «?
falls within that of y=42% Similarly, the._graph of y =3a?
would fall within that of y = 2 4? while that of y =} 2* would
fall without that of y =% If the student will construct all
these curves to the same axes, he will have what is called a
Jamily of curves, in this case the parabola family.

2. Construct on the same axes graphs for y=2*; y=24a3;
y=1a See§ 134

a. The coefficient a in the equation y = ax» is called the paramster of its
! curve. Evidently changing this parameter does not change the character of ®
the curve, but merely the scale of measurement of the ordinates.

3. The curves whose equations are y=2=1, y=at, y =2},
y=zy=2, y=a",
are given in the mar-
gin, 5 centimeters
being taken as the
unit of measure.
Verify that they are
correctly constructed
by locating points on
each of the curves.
Notice that all the
curves except that
for y=1 go through
0(0, 0), and P(1, 1),
since these coordi-
nates satisfy the equa-
) ‘ tions of these curves.
Notice also that all
, the curves except two extend on to the left of the Y-axis.

b. The graph of y = b + az», or, y — b = az», is closely related to that of
y = ax». Evidently each value of y, Exs. 1-3, is to be increased by b.

Y

4. Construct a graph from the equation given in Ex. 21, § 114,
in which the resistance is a function of the speed.
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317. Practical Applications of Graphs. Professor John Perry of
London gives the following problems to show one way in which
graphs can be used in engineering.

1. When the weight, y, was being lifted by a laboratory crane,
the handle effort, z (the force applied at right angles to the
handle), was measured and found to have the values in the table
below, from which the accompanying diagram was constructed.
For convenience the scale on the X-axis is 4 =1 cm.; and on
Y-axis is 50 = 1 em.

(=, ) Point

64 0)| a
(1.2, 50) | b
' (84, 100) | ¢
(10.4,200) | d

(12.4,300) | e

The points evidently lie very nearly
on a straight line. The straight line
graph which will come the nearest to
going through all the located points is
drawn as in the figure. The equation
of this straight line we may assume to be
y = ux + v, in which ¥ and v are unknowns to be found. Substituting the
coordinates of two points on the line (say @ and e) in the equation y = ux + v,
we have

(1) 0=6.4u+n. (2) 8300 =12.4u + ».

from which (§ 42), v =50, v =— 320. Hence, the law for the relation be-
tween weight and power in this crane is expressed by the equation

y =602 — 820,
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Find from this formula the power when the weight is 450;
also the weight when the power is 25.

2. If z is the electric power in kilowatts sent out from an
electric lighting station, and y is the number of
(x, ¥) pounds of coal burned in the boiler furnaces per
———————| hour, find from the data in the margin a formula
(349, 1121) | connecting « and y, first verifying the fact that
———| the graph is approximately a straight line.

(291, 1020) 8. An engineer wanted to be able to state
— | approximately the cost, y, of a steam plant to
(228, 927) | furnish « horsepower. He found that if z = 200,"
————| y=£4200; if x =120, y = £ 2450; if z = 30,
(171, 820) | y=£725. See, first, if the graph is approxi-
—| mately a straight line; then find the equation
(119, 743) | between z and, y; lastly, find from the formula
——| the cost of a steam plant to furnish 160 horse-
(711, 652) | power.

a. The graphs in 'engineering problems like the above

are usually not straight lines. If they are not, they may be compared with
any graph whose equation is known that comes closest to them.

318. Interesting Graphs Derived from Equations of ﬁigher Degrees.*
Construet the graphs to the following equations:
1. y=—=. 2 Y=o -z 8. ya?=81.
4 yP=2r42 6. ¥ =(x— 1)(x— 2)(x—3).
Suceestion T0 Ex. 5. Putz=0,4,1,%, 4% } 2, % § etc., up to 3, and
from there on put x equal to whole numbers. Notice when values of y be-
come imaginary.
6. Y¥=@&—1)(z—2)% 7. ¥=(@=—-1)*(z—2).
8. y¥=(z—1)%= 9. 10y =a® — 92’424 z—16.
10. (@*+y*+4)*—162*=16. Also right member = 10; also
=20. Cassini’s oval.

* Nearly all these curves will be found discussed in S8almon’s Higher Plane
Curves, a standard work on the subject.
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11. 99*=(2—9)*=*+ »?). Conchoid of Nicomedes.

2. (43— 2 =2+ 4> The Cardioide.

13. (@*+y*—3x)*=a"+ 3y’ Pascal’s Limagon.

14. @@=+ (F —4P=1 15 (& —4 '+ —1)2=1.
16. (F—92+ (P —13=16. 17. (@—4)+ (12— 1)*=16.
18. (P—4)7+ (P —4)?=16. 19. Y=o+

319. Transcendental Curves. By a transcendental * curve is
meant one that cannot be expressed by an algebraic equation
whose members are expressed in terms of integral powers of the
independent variable .

1. Construct the sine curve.

Suceesrion. Take 2 centimeters to denote 90° on the X-axis. At each
0° point of these 2 centimeters erect an ordinate equal to the sine as given
in the table, § 153, using 1 centimeter as unit.

2. Construct the cosine curve.
8. Construct the tangent curve.

4. Construct the graph of y=Ilog,x; then find logarithms
from numbers, and numbers from logarithms, by means of the
graph. Check results by referring to the log table,

SveeesTiON. Let z = .01, 0.1, 1, 3, 6, 8, 10, 20, finding from the table in
§ 163 the corresponding values of y, and tabulating the results.

6. Construct the spiral of Archimedes from the equation
r=2386, in which 4 is measured in radians or angles subtended by
the radius of a circle.

SucGesTION. See § 302. When § =0, r =0; when 0 =1(57.8°), r=3;
when 6 = 2(114.6°), r =6 ; ete.

. * By a transcendental quantity, or function, is meant one which can not be
expressed in terms of the unit or independent variable using the ordinary funda-
mental operations of algebra. Thus, 7, ¢, tan x, etc., are transcendental quantities.
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A

Abel, Niels Hendrik, 126.
Abscissa, 127.
Absolute constant, 231.
Absolute value, 86.
Addition, in general, 1.

in proportion, 152.

of algebraic numbers, 10.

of complex nufnbers, 85.

of determinants, 285.
- of equations, 41, 43, 215.

of fractions, 27.

of imaginaries, 81.

of inequations, 213.

of literal quantities, 10.

of radical quantities, 75.

rule in probability, 274.

theorem in trigonometry, 328.
Aggregation, symbols of, 5, 12.
Al-Chwarizmi, 123.
Algebra, 1, 96.
Algebraic expression or quantity, 4.
Alternation, 152.
Amplitude of complex number, 326.
Analytic method, 218.
Annuities, 198, 204.
Antecedent, 151.
Antilogarithm, 179.
Applications, in arithmetic, 19, 37,

202, 204, 321.

in formulas, 8, 116-120.

in geometry, 116-118.

in physics, 36, 37.

in trigonometry, 165, 168.

of graph, 129, 132, 135, 140-149.
Approximate value of fractions, 321.
Arabic notation, 123.
Arbitrary constant, 231.
Archimedes’s spiral, 336.
Argand, 83, 331.
Arithmetic, 1.

Arithmetical exercises, 19, 37, 202, 321.
Arithmetical numbers, 62.
Arithmetical progression, 190.
Arithmetical roots,”56, 58.
Arrangement of letters, 11.
Aryabhatta, 122.

Associative laws, 2, 3.

Averages, law of, 270.

Axes, 127.

Axioms, 33.

B

Base of system of logarithms, 171, 308.
Bhaskara, 123.
Binomial, 5.
any power of, 52, 208.
cube of, 17.
factoring, 20, 23.
square of, 16.
Binomial coefficients, 53, 208, 264.
Binomial quantity, 5.
Binomial series convergency, 305.
Binomial surd, 79.
Biographical notes, 122-126, 188, 256,
295, 313, 324, 331.
Bonds, 201, 205.
Brace, bracket, 5.
Brahmagupta, 122.
Briggs, 188.

C

Cardan, 126.

Cauchy, 313.

Chance, 269.

Change of origin, 140.

Characteristic, 172.

Checks, 10, 12, 22, 28, 53, 57, 59, 75,
76, etc.

Choice, 257.

Circle, graph of, 135, 147.
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Clairaut, 228.
Classes of problems in factoring, 23.

of simultaneous quadratics, 105.
Clearing of fractions, 33.
Coefficients, 5.

and roots, 220, 231.

binomial, 53, 208, 264.

detached, 15. .

of radicals, 69.

undetermined, 316.
Cologarithm, 183.
Combinations, 262, 273.
Common multiple, 27.
Commutative laws, 2, 3.
Comparison elimination, 42.
Comparison test in series, 303.
Complementary event, 270.
Complete quadratic, 93.
Completing square, 97.
Complex fraction, 29.
Complex number, 81, 86, 300, 325.
Complex root, 244.
Composition, 152.
Compound event, 274.
‘Compound interest, 185, 204.
Computation by logarithms, 180.
Conditional equation, 1, 32.
Conjugate complex number, 87.
Conjugate surd, 73.
Consequent in proportion, 151.
Consistent equations, 133.
Constant, 231.

absolute, arbitrary, 231.
Continuation symbols, x.
Continued fraction, 320, 324.
Continued proportion, 153.
Continued ratio, 165, Ex. 23.
Convergency of series, 301, 302, 305,

3086, 307.

Codrdinates, 127.
Cosecant, 160.
Cosine, 161, 164, 336.
Cotangent, 161, 164.
Cube root, 57-59.
Cubic equation, 148, 149, 230-255.

D

Decreasing roots of equations, 241.
Degree, of a term, 32.

of an equation, 32, 104.
De Moivre’s theorem, 330.

INDEX

Dependent variable, 232.
Descartes, 235.
Detached coefficients, 15.
Determinants, 278, 282.
Diagonal of determinants, 279.
Dialytic method, 292.
Difference, 10.
Differences, finite, 308.
Diophantine equations, 50, 122.
Diophantus, 122.
Discriminant, 222.
Discussion, of quadratic, 220.

of problem, 226.
Distributive law, 3, 4.
Divergency of series, 301, 302.
Divisibility, 18, 22, 233.
Division, 4, 11.

axiom of, 33.

by zero, 4.

in proportion, 152.

See Multiplication.

E

Element of determinant, 278.
Eliminant, 292.
Elimination, 40.

by addition and subtraction, 41.

by substitution, 40.

in quadratics, 105, 110.

special methods, 42.

three unknown quantities, 44.
Ellipse, 136, 137, 144, 147.
Equations, 1, 32. See also stmultane-

ous, tnconsistent, etc.

Equivalent equations, 43, 150, 215.
Error of logarithmic tables, 181.
Errors in algebraic operations, 91-92.
Evaluation, 7. v .

of determinants, 279, 289, 293.
Evolution, 54.
Expectation, 275.
Exponent, 4.

fractional, 60.

in division, 9.

in logarithms, 170, 171, 180.

in multiplication, 8.

zero and negative, 66.
Exponential equations, 187.
Exponential series convergency, 306.
Expression, algebraic. See quantity.
Extremes, 151.
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F

Factor theorem, 22, 233.
Factoring, 20.
solution of equations by, 95, 103.
Factors, 20.
order of, 11.
prime, 90.
signs of, changed, 27.
zero, 234.
Fallacy, 217.
Family of curves, 333.
Ferrari, 126.
Ferro, 124.
Fibonacci, 123.
Finite differences, 308.
Finite series, 301.
Fiori, 124.
Formulas, 16.
Fractions, 25.
as exponents, 60.
continued, 320, 324.
partial, 319.
Functionality, 159.
Functions, 129, 159, 232, 332.
equations solved for, 108, 111.
in trigonometry, 160.
notation of, 232.
Fundamental principles, 89.

G

Gauss, 234, 255, 295.
Geometrical progression, 194.
Geometry, 113, 153.
Graphs, 127, 129, 150.

and imaginaries, 224, 245.

of equations in general, 249, 332, 335.

of quadratic equations, 135.
of simple equations, 130.
Greek mathematics, 122.

H

Harmonic progression, 303.
Higher equations, 102.
Hindu rule, 98.

Historical notes, 122-126, 188, 255, 295,

313, 331.
Homogeneous case, 110.
Horner’s method, 250, 256.
Hyperbola, 137, 138, 145, 146, 147.
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I

Identical equations, 1, 32.
Identity axiom, 33.

Imaginaries, 81, 84, 136, 147, 224,
Incommensurables, 69.
Incomplete quadratics, 93.
Inconsistent equations, 134.
Indeterminate equations, 50.
Indeterminate quantity, 225, 300
Index of radical, 5.

Induction, 206, 209.

Inequality, 212.

Inferior limit of roots, 247.
Infinite continued fraction, 320.
Infinite series, 301.

Infinity, infinitesimal, 195, 225, 208.
Integers, 70.

Integral quantity, 25.

Integral roots, 240.

Interest, 185, 198, 204.
Interpolation, 179.

Inverse proportion, 138.,
Inversion, 152.

Involution, 52.

Irrational quantity, 69, 70.

J
Juita.position, 3.

L
Language of algebra, 7.

Laws, 2, 3, 4, 6, 8.

exponents, 60.
Leonardo, 123.
Letters, 1.
Lights, problems of, 228.
Like signs, 4.
Limits, 297.
Linear equations, 32.
Literal equations, 32.
Literal notation, 1.
Literal quantity, 5.
Logarithmic series, 306.
Logarithms, 170.
calculation by, 180.
calculation of, 171, 307.
curve of, 337.
history of, 188.
Lowest common multiple, of denomi-
nators, 27.



340
M
Mantissa, 172. .
Mean, geometrical, 151.
Means, 151.
Member of an equation, 32.
analytic, 218.

Method, in factoring, 23.
’ in quadratics, 107.
Minors in determinants, 286.
Minus, 2.
Mizxed quantity, 29.

Modulus of complex number, 86, 326.

of system of logarithms, 308.
Monomial, 5.
Mortality table, 273.
Multiplication, 3, 6, 11.

by logarithms, 182.

fractions, 28.

imaginaries, 82, 327, 329.

inequalities, 212.

radicals, 76, 78.

rule in probability, 274.

. N

Napier, 188.

Napierian logarithm, 308.

Natural functions; 163.

Natural logarithms, 308.

Naught. See Zero.

Negative exponents, 66.

Negative quantities, 2, 10, 70.

Negative roots, 252.

Negative series, 70.

Newton's binomial theorem, 52, 208.

Notation
determinants, 278.
functions, 232.
logarithms, 172.
radicals, 71.

Numbers, algebraic, 10.
complex, orthotomic, 81, 84.
irrational, 69, 70.
natural or arithmetical, 62.
rational, 69, 70.
real, 83.

Numerical coefficients, 5.

Numerical value, 5.

0o
Odds, 269.
Omission symbols, x.
Order of determinants, 278.

INDEX

Order of operations, 6.
Orders of difference, 309.
Orainate, 127.

Origin, 127, 140.
Oscillating series, 301.

P

Parabola, 139, 142, 147, 333.
Parameter, 224.
Parenthesis, 5, 12.
Partial fractions, 319.
Pascal triangle, 208.
Percentage, 37-39.
Period in continued fractions, 322.
in extracting roots, 56.
Permutations, 257, 265.
Perry, John, 334.
Physics, 36-37, 158-159.
Plus, 2.
Polar cobrdinates, 326.
Polynomial, 5.
factoring, 23.
square of, 18.
‘‘Polynomial in z,” 5.
Positive quantity, 10.
Powers, 4.
by logarithms, 181.
of complex number, 330.
of quantities, 12.
of radicals, 79.
of terms of a proportion, 153.
series, 305.
Precedence of operations, 6, 89, 90.
Present worth, 185.
Prime quantities, 90.
Principles, 89.
Probability, 269.
Problems, 46, 116-121, 226, 228.
Progression, 190.
Property,
of determinants, 283.
of identical equations, 1.
of quadratic equations, 220.
Proportion, 151, 157.
direct, 135, 138, 156.
inverse, 138, 156, 157.
Pure imaginary, 81.
Pure quadratic, 93.

Q

Quadratic equations, 93.
Quadratics, complete, 93.
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Quadratics, general case, 112,
graphs of, 135 et seq.
incomplete or pure, 93.
more difficult, 107.
simultaneous, 104, 110.
theory of, 220. .

Quadrinomial, factoring of, 23.

Quantity, 4.

R

Radicals, 69.
Radicand, 69.
Ratio, 151.

in right triangles, 160.

limit of, 297.

test for convergency, 304.
Rational numbers, 69, 70.
Rational roots, 240.
Rationalization of denominators, 72.
Real quantity, 70, 83.
Reasoning in equations, 215.
Reciprocal, 49.
Recurring continued fraction, 322.
Reduction, of fractions, 25.

of radicals, 71.

of repeating decimals, 195.
Remainder theorem, 233.
Repeating decimals, 195.
Repetitions, 260.
Resultant, 292, 295.
Reversibility of steps, 215.
Reversion of series, 318.
Root, of equation, 32.

of equations as a continued fraction,

322.

of quantity, 5, 12, 54-59.
Roots, and coefficients, 220, 231.

limits of, 246.

location of, 246.
Rule, slide, 186.

8

Satisfying an equation, 32.
Secant, 160.
Selections, 266.
Sequence, 301, 308.
Series, 301, 308.
reversion of, 318.
Signs, 4, x.
Descartes’s rule of, 235.
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in determinants, 282.
in fractions, 26.
in multiplication and division, 4.
Similar radicals, 5.
Similar terms, 5.
Similar triangles, 160.
Simple continued fraction, 320, 324.
Simple equation, 32.
Simplification of quantities, 13, 14.
of radicals, 71.
Simultaneous equations, 40, 278, 280,
289, 290, 291.
graphs in, 132, 143.
quadratic, 104, 110.
three unknown quantities, 44.
Sine, 161, 164, 336.
Sinking fund, 200.
Slide rule, 186.
Solution, 32.
Square root, 55-57.
Substitution, elimination, 40, 105.
Subtraction, 2, 10.
in proportion, 152.
Sum, 1, 2.
of series, 310.
Summation, 301.
Superior limit of roots, 247.
Surd, 69, 73, 79, 325.
Sylvester, 292, 295.
Symbolical forms, 225.
Symbols,
of aggregation, 5, 12.
table of, x.
Symmetrical equations, 111.
Symmetry, 59.
Synthetic division, 237.
Synthetic method, 218,
System of equations, 134, 219.
of logarithms, 171, 176, 308.

T

Tables
bond, 205.
discussion of quadratic, 223.
interest, 204.
logarithms, 176.
mortality, 273.
natural functions, 164.
powers, 69.
square root, ix.
symbols, x.
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Tangent, 161, 164, 336.
Tartaglia, 109, 124.
Terminating fraction, 320.
Terms, 5.

of a proportion, 151.

of a series, 309.

similar, 5.
Theorems, 16-18.

Theory of quadratic equations, 220.

Transcendental curves, 337.

Transcendental quantities, 326, 336.

Transformation of equations, 239.
Translating, 7.
Transposition, 33.

in inequalities, 212.
Trigonometry, 160 et seq.
Trinomial, 5.

factoring of, 23.
Type forms, exponents, 8, 9.

in factoring, 20-22.

in fractions, 30.

in quadratics, 100, 221.

in radicals, 71, 72.

U
Uniqueness axiom, 2, 3.
Unlike signs, 4.
Unlike terms, 5.

A\

Validity of processes, 215.
Value, numerical, 5.
Variable, 231.
Variation, 156, 159.

in signs, 235.
Verification, 32.
Vinculum, 5.

Z

Zero, 2.

Zero, as divisor, 4.
as exponent, 66.
as factor, 234.
as logarithm, 171.
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